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Abstract—Hadoop MapReduce assists companies and 
researchers to deal with processing large volumes of data. 
Hadoop has a lot of configuration parameters that must be 
tuned in order to obtain a better application performance. 
However, the best tuning of the parameters is not easily 
obtained by inexperienced users. Therefore, it is necessary to 
create environments that promote and motivate information 
sharing and knowledge dissemination. In addition, it is 
important that all acquired knowledge be organized to be 
reused faster, easily and efficiently whenever necessary. This 
paper proposes an ontology-based semantic approach to 
tuning parameters to improve Hadoop application 
performance. The approach integrates techniques from 
machine learning, semantic search and ontologies.

Keywords—Hadoop MapReduce; Hadoop performance; 
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I. INTRODUCTION

MapReduce, a framework introduced by Google Inc., is a
programming model designed to process large volumes of data
in parallel in a distributed environment (clusters) [1].

Hadoop [2] is an open-source implementation of 
MapReduce and is currently one of the most widely used 
implementations for processing large amounts of data. Its 
programming model is divided into two main phases: the Map 
and Reduce phases. The reduce phase is divided into phases 
shuffle, sort and reduce. These are the intermediate phases.

A large number of companies, research centers and 
researchers in general have used Hadoop MapReduce 
imple-mentations in applications such as data mining, 
production of reports, indexing Web pages, analysis of log 
files, machine learning, financial analysis, scientific 
simulation, statistics, research in bioinformatics and others 
[3]. Therefore, Hadoop has been studied to identify several 
aspects involving the tuning and performance.

Current studies show that the performance of 
Hadoop MapReduce jobs depends on the cluster 
configuration, input data type and job configuration settings 
[1], [3], [4]. Furthermore, some studies point out that 
most of the applications running on Hadoop, show a 
large difference between the behavior of Hadoop 
applications in map and reduce phases. For instance, in some 
cases the Map phase is computationally intensive, in other is 
Reduce and others both [4].

This paper proposes an ontology-based semantic approach
to improve Hadoop performance. The goal is to provide an en-
vironment for tuning parameters of the Hadoop configuration
based on semantic knowledge through ontologies. Thus, users
would get a better performance from their Hadoop applica-
tions. The work focuses on Hadoop configuration parameters
that have influence on the job performance. The approach
explores workload and cluster characteristics, and analyzes
the log history of previous executions. Then, based upon the
stored knowledge, it predicts tunable configuration parameters
and finds the best tuning for them, in order to improve the
Hadoop application performance against default values of the
parameters. The T-Box statements of the ontology describe a
set of concepts, and properties for these concepts, obtained
from a study that evaluated 40 papers that specifically address
the configuration parameters impacting the performance of
Hadoop.

We identified and explored, by a systematic review, how
the tuning parameters of Hadoop impact on the entire sys-
tem performance. More specifically, the research answered
questions about: (1) which Hadoop configuration parameters
has influences and impact on system performance, (2) which
parameters are influenced by Hadoop phases and (3) which pa-
rameters are influenced by workloads characteristics. Thus, it
was possible gather knowledge to make a conceptual mapping
and propose an ontology that is the basis for this approach.

This paper is organized as follows. In Section II, a back-
ground on Hadoop framework and information on the main
concepts related to Hadoop configuration parameters are pre-
sented. Section III introduces the proposed environment as
well as its main structure and the chosen knowledge repre-
sentation. Section IV presents the final considerations of this
paper.

II. BACKGROUND

This section presents the main concepts related to Hadoop 
configuration parameters which can be tuned to improve 
application performance.

A. Hadoop MapReduce

MapReduce is a framework of distributed functional 
programming. Its processing occurs in two phases: Map 
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and Reduce. MapReduce framework divides the work into 
a set of independent tasks and manages communications and 
data transfers between nodes in the cluster and the related 
parts of the system.

According to their characteristics, the MapReduce 
framework is well suited to run in a cloud environment. The 
cloud-based computing services are already available for use 
via Hadoop MapReduce [5].

Apache Hadoop [2] is the well known and most widely used
implementation of MapReduce. However, the improvement of
application performance is directly related to the setting of
the Hadoop’s parameters. To ascertain the relationship between
parameter values and a good performance is not a simple task,
even for experienced users.

The Apache Hadoop software library enable the distributed
processing of large data sets across clusters of computers using
simple programming models. It is designed to scale up from
single servers up to thousands of machines, each offering
local computation and storage. The library itself is designed to
detect and handle failures at the application layer, so delivering
a highly-available service on top of a cluster of computers.

Hadoop is a free, Java-based programming framework that
supports the processing of large data sets in a distributed
computing environment. It is part of the Apache project
sponsored by the Apache Software Foundation.

The functions map are distributed across multiple machines
by partitioning the input data into a set M of splits. These
splits may be processed in parallel by different machines.
Moreover, the functions reduce are distributed by partitioning
the intermediate keys R splits by a hash (key) mod R function.
This number of splits R and the partitioning function are
defined by the user.

The Hadoop Distributed File System (HDFS) is a distributed
filesystem that is designed for the Hadoop MapReduce frame-
work and has a master-slave architecture. Its cluster consists
of a single NameNode and a master server that manages the
namespace of file system and regulates the access of clients.
In addition, there are a number of DataNodes (usually one
by node) that manages the storage nodes. Internally, a file is
divided into one or more blocks. These blocks are stored in a
set of DataNodes. The DataNodes are responsible for serving
the requests of reads and writes in the files system. Moreover,
the DataNodes perform the creation, deletion and replication
blocks on instructions from NameNode.

1) Hadoop Parameters Review: In order to run a program
such as a job in Hadoop, an object configuration job is created
and the parameters of the job must be specified. That is, since
the job was created for MapReduce, it must enabled to run
in scale on a cluster [4]. Therefore, in order to avoid some
problems such as under-performance, it is necessary to tuning
some parameters.

Hadoop provides many configurable parameters that lead
to better or worse performance on a cluster. Most of these
parameters take effect on execution of the job and cluster.
In the case of large clusters of machines, these parameters
become quite important and provide an indication of the
performance of this cluster in relation to the submitted job.
Thus, for better system performance, the framework must be

further optimized as much as possible.
Hadoop has over 190 parameters that can be specified to

control the behavior of a MapReduce job. Among them, more
than 25 parameters can impact the performance of the task
[5]. Some configuration parameters aim to control various
aspects of the tasks behavior at runtime. Some of these
aspects include the allocation and use of memory, competition,
optimize I/O and network bandwidth usage. If the parameters
are not specified, default values are assumed.

The researched papers provided an overview of studies
which apply to performance of Hadoop systems in regard
to their configuration parameters. This research answered
questions about which Hadoop configuration parameters has
influences and impact on system performance, which param-
eters are influenced by Hadoop phases and which parameters
are influenced by workloads characteristics.

The results of that study were divided into three main parts:

• Configuration Parameters: focuses on identifying param-
eters which were used in the detected studies;

• Hadoop Phases x Parameters: focuses on which parame-
ters are affected by each Hadoop phase;

• Workload Characeristics x Parameters: focuses on iden-
tifying which parameters are related to the workloads
characteristics.

It were identified about 29 configuration parameters which
according to studies analyzed, impact the system performance.
The Table I summarizes the parameters, Hadoop phases in
which the parameters are critical and the main characteristics
of the application.

In the column Parameter Phase, we classify the parameters
which influence the phases of Hadoop: Map, Reduce and
intermediate sub-phases of the Reduce phase. The sub-phases
are classified as Merge/Shuffle phase. In addition, Core Job
was listed as a phase that represents those parameters that
directly control essential functions of the job. The parameter
dfs.block.size was classified by phase Number of maps just to
demonstrate that the value this parameter is what defines the
number of map tasks.

Optimizing Hadoop Performance through the characteristics
of workloads are important in order to make full use of cluster
resources (CPU, memory, IO and network - see Table I, in the
column Workload Characteristics).

Among other examples, to set certain parameters can reduce
the IO cost and network transmission, but it can cause a CPU
overhead. If we configure the mapred.compress.map.output
to true (default is false), it will decrease the size of data
transferred from the Mapper to the Reducers, but it will add
more processing in the data compression and decompression
process [4]. Furthermore, some parameters are correlated with
each other. The relation between the io.sort.mb parameter (the
amount of buffer space in megabytes to use when sorting
streams) and mapred.child.java.opts parameter (Java control
options for all mapper and reducer tasks) is an example. The
upper limit of the former is smaller than the second size.
Configure sufficient Map and Reduce slots to maximize CPU
utilization and configure the Java heap size (for Map and
Reduce JVM processes) so that ample memory is still available
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TABLE I: Configuration Parameters

Parameter Category Parameter Level Parameter Phase Workload Characteristics Parameter
Hadoop Cluster Level Merge/ Shuffle IO dfs.replication

dfs.replication.interval
mapred.min.split.size

Number of maps dfs.block.size
Job Level Core Job CPU mapred.compress.map.output

mapred.job.reuse.jvm.num.tasks
mapred.output.compression.type
mapred.reduce.slowstart.completed.maps

Memory mapred.child.java.opts
Network mapred.reduce.parallel.copies

Map CPU mapred.map.tasks.speculative.execution
mapred.tasktracker.map.tasks.maximum

Merge/ Shuffle CPU mapred.map.output.compression.codec
IO io.file.buffer.size

io.sort.factor
io.sort.mb
io.sort.record.percent
io.sort.spill.percent

Memory mapred.inmem.merge.threshold
mapred.job.reduce.input.buffer.percent
mapred.job.shuffle.input.buffer.percent
mapred.job.shuffle.merge.percent

Reduce CPU mapred.reduce.tasks.speculative.execution
mapred.tasktracker.reduce.tasks.maximum

Memory mapred.tasktracker.tasks.maxmemory
Workload Job Level Map CPU mapred.map.tasks

IO mapreduce.combine.class
min.num.spills.for.combine

Reduce CPU; IO mapred.reduce.tasks

for the OS kernel, buffers, and cache subsystems are other
examples [6].

Workload characterization by CPU, memory, IO and net-
work (via benchmarks) is essential before performing any tun-
ing parameters. Furthermore, it is important that we deploy the
parameters that are related to the characteristics of workloads.
This allows identifying the parameters that can be set to obtain
best performance.

B. Questions and Considerations

The answers for the questions presented in Section 1 are of 
great value for modeling the ontology for Hadoop. To repeat 
the questions: (1) which Hadoop configuration parameters 
have influences and cause impact on system performance, (2) 
which parame-ters are influenced by Hadoop phases and (3) 
which parameters are influenced by workloads characteristics.

Answering the question about which Hadoop configuration
parameters has influences and impact on system performance,
it is clear that about 29 Hadoop configuration parameters are
those which have more impact on the system performance.
From those 30 parameters, 10 parameters were covered over
65% of the papers. We observed that the most discussed
parameters on those works are mapred.reduce.tasks (The sug-
gested number of reduce tasks for a job) with 31 papers of the
40 papers surveyed, mapred.map.tasks (The suggested number
of map tasks for a job) with 23 papers, dfs.block.size (The basic
block size for the file system) with 26 papers and io.sort.factor
(The number of map output partitions to merge at a time)
with 18 papers. These parameters are those that allow the

framework to attempt to provide data locally for the task that
processes the split. Although some parameters have not been
widely exploited by most papers, studies have shown their
importance in relation to performance.

Answering the question about which parameters are in-
fluenced by Hadoop phases, we identify the parameters that
are affected by each Hadoop phase. This will also allow the
targeting of tuning the parameters identified at each stage of
Hadoop, if required. This approach would be rather useful if
we know the application characteristics and at what phase it
is CPU, IO or network bound, for example. Thus, the tuning
of the parameters would be directed by this prior knowledge.

Answering the question about which parameters are influ-
enced by workloads characteristics, we can observe the pa-
rameters are impacted according to workloads characteristics.
Thus, it is possible, in future work, observe the workloads
characteristics and working with the tuning of Hadoop param-
eters targeted at them.

C. Analyzed Papers

Analyzed papers have had in common the exploitation of
configuration parameters and performance of Hadoop. How-
ever, we notice that the studies have different core purposes, as
well as different methods of experimentation. Thus, for better
understanding, we classified the papers according to the main
purpose and the methods applied.

For classifying the experimentation method, it was used
the taxonomy proposed by Zelkowitz and Wallace [7]. In this
taxonomy there are four approaches toward experimentation:
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(1) Scientific Method, (2) Engineering Method, (3) Empirical
Method and (4) Analytical Method.

Table II shows the main purpose of each work and the main
experimentation methods found in the analyzed papers. Impor-
tantly, the identification of the method used in the analyzed
studies are not always as clear to identify. Some studies show
a twofold interpretation. Thus, even with dubious features, in
some cases, we classify according to the predominant method.

TABLE II: Purpose and Experimentation Approach Results

Purpose Approach Scientific Papers
Energy
Prediciton

Analytical [8]

Performance
Analysis

Empirical [9], [10], [11], [12], [13], [14]

Performance
Model

Empirical [15], [16], [17]

Analytical [18], [19], [20], [21], [22], [23]
Performance
Penalties

Empirical [24]

Performance Pre-
diction

Empirical [25], [26], [27], [28], [3], [29], [30],
[31], [32], [33]

Analytical [34], [35], [36], [37], [38]
Performance
Tuning

Empirical [5], [39], [6], [40], [41], [42], [43]

Analytical [44]

We observed that many studies focused between the purpose 
of obtaining performance models (about 22.5%) and perfor-
mance prediction (37.5%). Others were divided into 
perfor-mance analysis and tuning performance, and only 
one job to prediction energy and performance penalties. 
Furthermore, we observed that 67.5% of the analyzed 
papers have used the empirical approach as experimentation 
method, and 32.5%have used the analytical method.

Most studies have adopted an empirical approach in 
experimental methods. This means that the proposed 
hypothesis are validate by statistical analysis methods. On 
the other hand, some studies have utilized the analytical 
method. These studies have developed a formal theory to a 
problem, and results derived from this theory were compared 
with empirical observations.

III. PROPOSED APPROACH

This section presents an approach that gathers and organizes
the components of the proposed environment as well as its
ontology, to create a semantic environment.

As we have seen, to achieve an optimal configuration
of Hadoop to obtain the best possible performance of your
applications, it is not an easy task. Depends on several fac-
tors, including the characteristics of the application, workload
and cluster, and others. The big challenge is that users of
Hadoop MapReduce get to know, even before submitting their
applications to a particular cluster or a cloud computing, the
prediction of the most appropriate configuration parameters
and the best tuning in order to get the best performance
possible. This approach proposes a semantic environment,
combining semantic resources, machine learning and Hadoop
tuning concepts.

Fig. 1 provides a general overview of the ontology-
based semantic approach to tuning parameters to improve 
Hadoop application performance. The approach is based on 
the Hadoop Ontology and subdivided into three main 
modules: pre-processing, the parameter tuning generator 
and search.

Fig. 1: Proposal Semantic Approach.

  Being a semantic environment, it is proposed that all 
knowl-edge representation generated by collaborative tools and 
by the insertion of external knowledge should be organized in 
ontolo-gies. The ontology integrated into the proposed 
environment to make tuning possible is presented in the next 
section. The approach of the environment with a detailed 
description of each component is presented in the next 
sections.

A. Semantic Knowledge Representation

In that environment, all knowledge generated by the inser-
tion of contents is classified and organized according to the
workload characteristics. The characterization of workloads
should be based in [45]. The work presented a methodology
for understanding the performance of Hadoop MapReduce
using traces of Facebook and Yahoo. It tries to answer
what-if questions are related to system size, data intensity
and hardware/software configuration. Thus it is proposed to
organize the knowledge in a Hadoop Ontology. The Hadoop
ontology was developed by creating a concept taxonomy,
which describes the relations between workloads, Hadoop
phases, configuration parameters and a set of axioms.

Therefore, after extracting the required attributes (see Sec-
tion III-B1), the ontology is populated with this data. As shown
in the Fig. 1, the OntoHadoop is divided into two parts: a T-
Box containing a set of terminology axioms [46] based on
knowledge (see Section II-A1 and Section II-B) acquired and
modeled; and A-Box containing the set of assertions described
for the T-Box. Thus, the unit tuning generator (see Section
III-C) populates the A-Box of OntoHadoop with information
on units of tune, creating individuals tuning in A-Box.
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B. Pre-Processing

The pre-processing is mainly characterized by Workload
Characterization Extractor. The user submits the Job History
of executing an application on Hadoop. This log is parsed
by Workload Characterization Extractor module and stored in
the workload profiles repository. This process serves to two
purposes: the first one is the characterization of the workload
itself and the second one is to instantiate the ontology with
those characteristics.

1) Workload Characterization Extractor: When the logs are
submitted, a parser extracts information from data ratio, such
as number of bytes read and written in the input, shuffle and
output stages; plus the total duration of application execution
and duration of map and reduce phase. Thus, the performance
metrics represent each job according to its size, either in data,
runtime, or map and reduce task time.

Then, the module applies rules of machine learning to
estimate the type or profile of the workload from the variables
already mentioned. A good approach to achieve this goal is the
use of linear regression [8], [41] which data are modeled using
linear predictor functions, and unknown model parameters are
estimated from the data.

In this way, it extracts the main feature of the workload
regarding the classification suggested by [45], which classifies
workloads in: small jobs, load data, aggregate, aggregate and
expand, expand and aggregate, data transform, data summary
and transform and expand. All the extracted information is
stored in a profile repository for later use in new submission
job history. The intention is that the more logs are submitted,
the better the characterizations in the future.

C. Parameter Tuning Generator

The generator unit line is divided into two subcomponents:
the semantic search engine and unit tuning generator.

1) Semantic Search Engine: The semantic search engine
has three purposes:

• Search existing units of tune: After the tuning schema
have been defined, the semantic search engine checks if
there is already some similar tuning unit and presents it
to the expert;

• Search by entering a log history: the log is parsed and
classified in the pre-processing (see Section III-B) and,
after stored in the repository, is launched to the semantic
search engine to find a suitable unit tuning within the
ontology;

• Search by statements in SPARQL [47] directly in the
ontology by specific statements about type, size, and other
characteristics of the workload.

2) Unit Tuning Generator: The Unit Tuning Generator
is responsible for generating units tuning that compose the
ontology instances. First, an expert is responsible for creating
a tuning scheme (see Fig. 1 (1)), which defines a parameter
tuning theoretically ideal for a given workload. This tuning
scheme will contain information about workload, such as the
profile of the workload, which Hadoop phases are critical and
if application is CPU, IO or memory bound, among others. So,
in Fig. 1 (2), the expert evaluates, selects, and if he wishes,

changes the units of tune. Then, this unit goes to the Tuning
Unit Generator module to be instantiated in OntoHadoop;

D. Search Component

After the ontology be populated, users can perform searches
by workloads or Hadoop configuration parameters. This com-
ponent has no semantic search support. The search component
searches the ontology both by workload type and by units
tuning, according to the keywords defined by the user. Results
are presented to the user in order to know which informations
are contained in the ontology.

IV. FINAL CONSIDERATIONS

The paper presented an ontology-based semantic approach.
This approach aims at building an environment to achieve the
Hadoop tuning parameters and improve the performance of
applications in this environment.

The most Hadoop MapReduce users do not know exactly
which configuration parameters are appropriate or should be
tuned to obtain the best performance from their applications.
Provide the user the best possible configuration parameters in
order to improve the performance of the applications before
they are performed could prevent unnecessary waste of time
and expense.

Furthermore, the Hadoop MapReduce environment needs
environments that argue about techniques for predicting the
best definition of the configuration parameters associated with
workloads and their specific characteristics semantically mod-
eled. Moreover, to our knowledge there is no existing work in
this direction, addressing the ontology-based semantic for this
purpose.
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