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Image Matting via LLE/ILLE Manifold Learning
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Abstract—Accurately extracting foreground objects is the
problem of isolating the foreground in images and video, called
image matting which has wide applications in digital photog-
raphy. This problem is severely ill-posed in the sense that, at
each pixel, one must estimate the foreground and background
pixels and the so-called alpha value from only pixel informa-
tion. The most recent work in natural image matting rely on
local smoothness assumptions about foreground and background
colours on which a cost function has been established. In this
paper, we propose an extension to the class of affinity based
matting techniques by incorporating local manifold structural
information to produce both a smoother matte based on the so-
called improved Locally Linear Embedding. We illustrate our
new algorithm using the standard benchmark images and very
comparable results have been obtained.

Index Terms—Image Matting, Locally Linear Embedding, Man-
ifold Learning, Alpha Matte, Nesterov’s Method

I. INTRODUCTION

Image matting is the problem of isolating the foreground in
a single image. These kind of problems are important in both
computer vision and graphics applications as well image/video
editing. There is a large amount of research interest in the
field and a variety of techniques that have been developed to
solve this problem. We refer readers to a 2007 survey article
[1] in which a comprehensive review of existing image and
video matting algorithms and systems was presented with an
emphasis on the advanced techniques that have been recently
proposed.

Most common techniques rely on the so-called alpha matte
model. The model specifies the image composition process
from alpha matte, mathematically defined as follows,

L =aF,+(1—-0q;)B; (D

where I;, «;, F; and B, are image colour value, the alpha
matte value, the foreground image colour value and the
background colour value, respectively, at a given pixel 7. We
assume that the alpha matte value «; lies in the range between
0 (for true background pixels) and 1 (for true foreground
pixels). This kind of alpha matte are called soft matte, while
the hard matte values take either O or 1 to clearly distinguish
foreground and background pixels.

Matting requires that the «;, F; and B, are solved si-
multaneously with the only available image information I;.
Obviously this is a severely ill-posed problem. In practice,
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matting requires user interaction to produce acceptable results.
One of common approaches relies on the user supplying a
trimap, which is an input image which labels some pixels as
definite foreground, definite background and some unknown
regions. Usually the unknown regions are around the boundary
of the objects to be extracted. To infer the alpha matte value
in the regions, Bayesian matting [2] uses a progressively
moving window marching inward from the known regions.
Bai and Sapiro [3] proposed calculating alpha matte through
the geodesic distance from a pixel to the known regions.
Among the propagation-based approaches, the Poisson mat-
ting algorithm [4] assumes the foreground and background
colours are smooth in a narrow band of unknown pixels, then
solves a homogenous Laplacian matrix; A similar algorithm
is proposed in [5] based on Random Walks.

In the closed-form matting approach [6], Levin et al
exploited learning approach to fit a linear model for foreground
and background colours in each local window, thus globally
a matting Laplacian matrix can be formulated to impose a
natural smoothness constraint and finally a quadratic cost
function over alpha matte can be minimized to solve the
matting problem. As minimizing a quadratic cost function is
equivalent to solving a linear system, a closed-form solution
can be achieved. One of benefits offered by this approach is
that user input can be reduced to several scribbles because of
smoothness specified by the Laplacian matrix in the technique.
When the image size is large, the resulting linear system is
huge and it is time-consuming to solve. In a recent work
[7], He et al. proposed a fast matting scheme by using large
kernel matting Laplacian matrices. Although the closed-form
matting takes care of global smoothness of entire matte,
it pays less attention to edge discontinuity. In our recent
research we introduced zero-one penalty [8] and total variation
regularisation [9] to enforce edge preservation. This has added
better improvement over the closed-form matting and other
similar learning-based approaches.

A similar approach [10] has been proposed by making use
of the Local Tangent Space Alignment (LTSA) [11]. LTSA,
as a manifold learning approach, is an unsupervised learn-
ing algorithm that computes low-dimensional, neighbourhood-
preserving embeddings of high-dimensional inputs. The argu-
ment used in [10] is to apply the LTSA algorithm to capture
local linear structure among the colour information over a
local window and link that to the matting value space. This
kind of observation is intuitively vert encouraging for manifold
learning methods to be successful in image matting.

In this paper, we consider using traditional manifold learn-
ing algorithms [12], [13] such as Locally Linear Embedding
(LLE) [14] and its improved version iLLE [15] to solve the
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problem of image matting. As has been done in [6], we still use
the so-called user-specified constraints (such as scribbles or a
bounding rectangle). Similar approaches can also be found in
[6], [16], [17]. In deriving the matting Laplacian matrices [6],
the authors have used the assumption that the foreground (or
background) colours in a local window lie on a single line in
the RBG colour space. This assumption is going to be naturally
replaced with the smooth manifold assumption which is purely
a mathematical assumption in learning a smooth manifold.
Hence, a locally linear learning model such as LLE can be
utilized to capture such linear information which in turn assists
matte information learning. One of innovations offered by our
approach is to take a natural definition of pixel neighborhood
on the colour manifold as the neighborhood used in most
standard manifold learning algorithms such as LLE. It is hoped
that the idea of using manifold learning or a dimensionality
reduction approach for image matting as offered in this paper
will inspire more exploration in this direction.

The paper is organized as follows. Section II simply in-
troduces the Locally Linear Embedding (LLE) [13], [14]
and iLLE [15] manifold learning algorithms. Section III is
dedicated to formulating the new algorithms based on LLE.
In Section IV, we present several examples of using the new
image matting approach over the benchmark images, see [6].
We make our conclusions in Section V with suggestions for
further exploring the application of dimensionality reduction
algorithms in image matting.

II. LLE/ILLE ALIGNMENT MATRICES
A. LLE and Its Alignment Matrix

The locally linear embedding (LLE) algorithm has been
recently proposed as a powerful eigenvector method for the
problem of nonlinear dimensionality reduction [14]. In the last
decade, many LLE based algorithms have been developed and
introduced in machine learning community: kernelized LLE
(KLLE) [18], Laplacian Eigenmap (LEM) [19], Hessian LLE
(HLLE) [20], robust LLE [21], weighted LLE [22] enhanced
LLE [23] and supervised LLE [24].

By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear
manifolds, such as those generated by images of faces, or
documents of text. The LLE method is also widely used
for data visualization [14], classification [22], [24] and fault
detection [25].

Because of the assumption that local patches are linear, that
is, each of them can be approximated by a linear hyperplane,
each data point can be represented by a weighted linear
combination of its nearest neighbours (different ways can
be used in defining the neighbourhood). Coefficients of this
approximation characterize local geometries in a highdimen-
sional space, and they are then used to find low-dimensional
embeddings preserving the geometries in a low-dimensional
space. The main point in replacing the nonlinear manifold
with the linear hyperplanes is that this operation does not
bring significant error, because, when locally analyzed, the
curvature of the manifold is not large, i.e., the manifold can
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be considered to be locally flat. The result of LLE is a single
global coordinate system.

The argument that we take for using the LLE for image
matting is that, like the application of the Laplacian alignment
matrix used in [6], local linear structure among the colour in-
formation over a local window can be learnt and transferred to
the matting value space. This observation suggests intuitively
that the LLE alignment matrix could be successful in image
matting.

In the following sections, we still use X; = {L;j\ij €
w;,j = 1,..., K} to denote the subset of colour vectors over
a local window pixels of pixel ¢. Note that the pixel I; is
contained in X;. Under the LLE assumption, the colour vector
I; at pixel ¢ can be approximated by a linear combination /3;;
(the so-called reconstruction weights) of its K — 1 nearest
neighbours X;\I;,. Hence, LLE fits a hyperplane through
I, and its nearest neighbors in the colour manifold defined
over the image pixels. The fitting is achieved by solving the
following optimal problem

K
i ST 3 01
i Jj=1

under the condition Ele Bi; = 1. For the sake of simplicity,
we assume that 3;; = 0 when I;; = I;. Assuming that the
manifold is locally linear, the local linearity may be preserved
in the space of matting values. Once the weights W have
been determined, the matting values a can be determined by
minimizing the following objective function

K
H}xlIlF(Oé) = Z ||Olz - Zﬂijaij H2 = aTRLLEa (2)
i j=1

where Ry p = (E — W)T(E — W) is called LLE alignment
matrix and F is the identity matrix.

In the standard LLE algorithm, (4) is usually solved with ad-
ditional constrained conditions like |||z = 1 which results in
an eigenvector problem. Instead of such standard constraints,
in image matting we would like to formulate a matting solution
by including appropriate constraints. We will discuss this issue
in the next section.

B. iLLE and Its Alignment Matrix

Recently Xiang et al [15] re-explained the LLE as well
as LTSA (Local Tangent Space Alignment) [11] under the
framework of local linear transformation, and a close link
between LLE and LSTA has been established. Based on this,
Xiang et al. [15] proposed a new model of improved LLE
(iLLE).

We still use X; = {I;,]i; € w;, j = 1,..., K} to denote the
subset of colour vectors over a local window of pixel 7. Note
that the pixel I; is contained in X;. In LLE, a linear regression
was established to regress I; by the rest of pixels X;\I; in Xj;.
In iLLE, we can construct K linear regressions. That is, we
can linearly approximate each pixel I;; with the rest of pixels
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in X;. Specifically, we have

l .
:Zﬁz(,j)lll +6ij7 J = 172a"'aK
I#j
1 1 1) K
Denote 8, ; = [6Y,.... 69, 800 88T a (K —1)-
d1men510nal vector. Then the welght vector 3, ; can be solved
for each j respectively by

Zﬁ Z)Iiz I? + MIB”H%
I#7

mln ||I

under the condition Zl ” ﬂl(l])

lution for the weight vector 8, can be given, please
refer to [15] for more details. For each j = 1,..., K,
let define an extended K-dimensional vector by ﬁ;’ =
[—52(71]-)7 . —ﬁi(fj*l% 1, —ﬂf?fl), . _5§§)]T’ i.e., we insert |
at the location j in 3, ; and negate all its components. Then
define K small matrice by

1. A closed-form so-

. N T
O =pWB0" | forj=1,2,... K

Now consider the matte value space, i.e., all the matte
values & = [ay,....,an]? over all N pixels. In the local
window w; at pixel ¢, we wish to find the suitable matte value
o; = [, ..., ;|7 such that under the learned locally linear
structures the following error is as small as possible

K
Z levi,
j=1

where C; = Zszl Cj(-i) is a K x K matrix.
Optimization (3) can be further extended to the entire matte
value space. This is to ask

Za Cial = a"Rypa “4)

3" 8%, |? = aiCial 3)
I#35

mln Fla

where Rj1g is called iLLE alignment matrix and it can be
constructed by Riig = ), SZ-C’iSZ-T where S; is a column
selection matrix such that only columns {i1,1s,...,ix} are
chosen.

The improved LLE can be considered as a collective version
of the standard LLE [14] by taking a turn for each pixel
to be linearly approximated by the rest pixels in a local
window. This way specifies more constrains over the matte
value space. We can demonstrate that the matting based on
iLLE has some significant improvement over the matting with
the conventional LLE.

Xiang et al [15] also proved that the improved LLE
alignment matrix can be constructed according to the local
linear transformation from the image color space to the matte
value space. Thus the matting algorithm based on iLLE is
closely related to the Laplacian alignment matting algorithm
[6]. In the construction of the Laplacian alignment matrix, the
linear transformation from the color space to the matte value
space is constructed based on all the color information in a
local window of one pixel to predict the signal matte value
corresponding to the pixel, while the iLLE alignment matrix
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is based K local linear transformations each of which is built
on color information over the rest of pixels to predict the matte
value at a particular pixel in turn.

III. ALGORITHM FORMULATION
A. Formulation

In terms of machine learning terminology, the image matting
is a unsupervised learning problem. As we pointed out in the
introduction, one of major approaches in image matting is to
use the so-called trimap or user-scribbles. The information
given in a trimap or from user-scribbles is that for a group
of pixels over an image, their alpha matte are known.

For this purpose, let 2 be a subset of pixels and I', be the
operator mapping alpha matte o to the given alpha matting
values oy (trimap and user-scribbles) over {2, then the matting
problem is to minimize the following objective function with
respect to a such that 'g(a) = ag

min  F(a) = o’ Re.

Fa(a)=ap
where R is either the LLE alignment matrix or the iLLE
alignment matrix.
To get a smoother alpha matte ¢, we propose to formulate
two optimization problems for our image matting

1) Scribble Smoothing [6]: Instead of using hard scribble
constraints, we seek for v by smoothing the matting
value using

H}in aRa® + Mo — ag)Do(a® —ad)  (35)

where A is some large regularizer, D is a diagonal
matrix whose diagonal elements are one for constrained
pixels (in trimap or user-scribbles) and zero for all other
pixels, and g is the vector containing the specified
alpha values for the constrained pixels and zero for all
other pixels.
2) Constrained-Scribble Smoothing: In this formulation, we
will constrain « to its soft range 0 < a; <1
min aRa’ 4+ \a — ag)Do(a —al) (6)
0Xa=x1
where 0 < a < 1 means the elements of the vector a
are between O and 1.

B. Algorithms

It is easy to solve the optimization problem (5) for the scrib-
ble smoothing as it is an unconstrained quadratic programming
problem. To reenforce the user scribble conditions c over
pixels €2, the algorithm in [6] takes a larger regularizer such
as A = 100. Thus the objective function can be optimized by
solving a sparse linear system:

(R + )\DQ)(X = /\(XQ. (7)

However solving the optimization problem defined in (6) is
much harder as it is a quadratic programming problem with
a set of linear inequality constraints. One of approaches to
solve a quadratic programming problem is to use an interior
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point method that uses Newton-like iterations to find a solution
of the Karush-Kuhn-Tucker conditions of the primal and dual
problems. The computational complexity is polynomial time
of the size of the matrix R. Even for a moderately sized image,
it is intractable for one to use a standard quadratic optimization
algorithm as the number of variables is equal to the number of
pixels in the whole image. Fortunately given the special form
of the constraints involved in the problem, a trust-region alike
algorithm as proposed in [26] can be used for the optimization
problem defined in (6). The algorithm has a fast convergence
rate of O(1/k?) where k is the number of iterations. However,
the trust-region alike algorithm is very expensive because the
second order derivative of the objective function is needed.

However we also note that the problem is convex and
smooth. In the following sections, we propose applying the
optimal first-order black-box method for smooth convex op-
timization, i.e., Nesterov’s method [27]-[29], to achieve a
convergence rate of O(1/k?). We first construct the following
model for approximating the objective function F'(c) in (6)
at the point ¢,

~ ~ C~
he.a(@) = F(a) + F'(a)(@ - a)" + 5 llee— al?, @®)

where C' > 0 is a constant.

With model (8), Nesterov’s method is based on two se-
quences {ay} and {si} in which {a} is the sequence of
approximate solutions while {s;} is the sequence of search
points. The search point s is the convex linear combination
of a1 and oy, as

s = oy + P (o — ag—1)

where ) is a properly chosen coefficient. The approximate
solution avx41 is computed as the minimizer of h¢, s, (). It
can be proved that

C 1 2
Qa1 = argmin —k H& — (sk — CF’(sk)) 9)

0<a<1 2 k

where C} is determined by line search according to the
Armijo-Goldstein rule so that C'y should be appropriate for sy,
(see [29]). i1 defined by (9) is actually the projection of
the vector skfcikF’(sk) over the convex set {a|0 < & < 1}.
We can easily work out the projection given by the following
formula

Q11 = max {0, min {1, Sk — lF'(sk)}} . (10)
Ch

where both max and min operate over vectors component-
wisely as the same meaning in Matlab.

An efficient algorithm for (6) is summarized in Algorithm
1.

C. Reconstruction of Foreground and Background Images

After solving for the alpha values o, we need to reconstruct
foreground F and background B. For this purpose, we take
the same strategy as [6] to reconstruct F' and B by using the
composition equation (1) with certain smoothness priors on
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Algorithm 1 The Efficient Nesterov’s Algorithm
Imput: Cy > 0 and o, K
Output: a1
1: Initialize oy = g, 7—1 = 0,7 = 1 and C' = (.
2: for k=1 to K do
3 Set By = 221 5 — oy + Br(ou, — 1)
4

Vi —
Find the smgllést C =Ck_1,2C;_1,... such that

Flagt1) < he,s, (ag+1),

where a1 is defined by (10).
1+4/144~}
2

W

Set Cy, = C and 41 =
6: end for

Fig. 1. Images and Strokes

both F and B. F and B are obtained from optimizing the
following objective function

%g2||a,Fl+(1 ai)Bi —L||* + (9o, (OF;)* + (0B;)?)

where 0 is the gradient operator over the image grid. For a
fixed A, the problem is quadratic and its minimum can be
found by solving a set of linear equations.

IV. EXPERIMENT RESULTS

All the algorithms are implemented using MATLAB on
a small workstation machine with 32G memory. In all the
calculations, we set A = 100, see (7), in both algorithms.

A. Experiment |

In this experiment, we aim to compare the performance of
our newly suggested LLE alignment matrix with the Laplacian
alignment matrix introduced in [6] for image matting, under
the Scribble Smoothing formulation. Similar to the closed-
form solution, we solve (7) for matte values.

For this experiment, two images from the original paper
describing the closed form solution for image matting [6] are
used for tests. Figure 1 presents the images and their stroked
images as used in the algorithm comparison.

Figure 2 presents matting results on the two images, re-
spectively. In Figure 2, the first and third columns show the
results from the closed-form solution while the second row and
the fourth row show the results from the Scribble Smoothing
formulation based on the LLE alignment matrix. The results
given by the LLE alignment matrix look visually comparable
to the results in [6].
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Fig. 2. Mattes from strokes with the Closed-form solution for the Laplacian
alignment matrix (the first and third columns) and the Scribble Smoothing
for the LLE alignment matrix (the second and fourth columns): (a) Learned
Masks (the first row). (b) Reconstructed foreground images (the second row).
(c) Extracted background images (the third row).

B. Experiment II

In this experiment, we compare the performance of iLLE
alignment matrix against the LLE alignment matrix based
on two algorithm formulations. All the setting used in this
experiment is exactly same as those used in Experiment I.
Image and its scribbles used in this experiment are shown in
Figure

Fig. 3. Images and Strokes

Figure 4 presents matting results on the plant image. In
Figure 4, the first and second columns show the results from
the Scribble Smoothing for the LLE and iLLE alignment
matrices, respectively; and the third and fourth columns show
that from the Constrained-Scribble Smoothing for both LLE
and iLLE alignment matrices, respectively. The results given
by the iLLE alignment matrix is slightly better than those
given by the LLE alignment matrix.

C. Experiment III

In this experiment, the primary goal is to assess the per-
formance of the two formulations: Scribble Smoothing (SS)
and Constrained-Scribble Smoothing (CSS) presented in this
paper. We use iLLE alignment matrix as an example. For
this purpose, we use benchmark test images taken from the
matting website http://www.alphamatting.com. On the website,
there are four types of test images. The images that we are
using are (A) plastic bag (Highly Transparent); (B) net
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Fig. 4. Mattes from strokes with the LLE (the first and third columns)
and iLLE (the second and fourth columns) alignment matrices with Scribble
Smoothing (the first and second columns) and Constrained-Scribble Smooth-
ing (the third and fourth columns) formulations: (a) Learned Masks (the first
row). (b) Reconstructed foreground images (the second row). (c) Extracted
background images (the third row).

(Strongly Transparent); (C) elephant (Medium Transpar-
ent) and (D) peacock (Little Transparent but with detailed
structures). The four original images and their strokes used in
the experiment are displayed in Figure 5.

(a) Plastic Bag

(c) Elephant

(d) Peacock

Fig. 5. Images and Strokes: (a) Highly Transparent. (b) Strongly Transparent.
(c) Medium Transparent. (d) Little Transparent

The results for the highly transparent image plastic
bag and the strongly transparent image net are shown in
Figure 6 in which the first and third columns are for the SS
formulation while the second and fourth columns are for the
CSS formulations. The first row shows the learnt alpha matte
for each image and formulation while the second row and
the third row show the extracted foreground and background
images.

It is obvious that, for the highly transparent plastic bag, the
learnt alpha matte from the CSS formulation is much better
than the one from the SS formulation while for the strongly
transparent net the results from both formulation schemes are
comparable to each other.

Similarly we have shown the results for both the medium
transparent elephant image and the little transparent
peacock image in Figure 7.

From this group of results, we can conclude that the
performance of both formulation schemes are comparable
to each other, but the CSS formulation slightly outperforms
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Fig. 6. Learning Results for the Highly and Strongly Transparent Images

Fig. 7. Learning Results for the Medium and Little Transparent Images

the SS formulation as can be observed from the part of
background that has been absorbed into the foreground by
the SS formulation, e.g., the green spot on left upper region
of the peacock’s plumage in the image.

Actually the matting problem for all the images used in this
experiment is very challenging. For example, the colour infor-
mation of the background and foreground in the elephant
image is quite similar. In this case, we note that the SS
formulation performs much better than the CSS formulation
scheme.

V. CONCLUSION

This paper proposes two formulations for image matting
based on the classical LLE alignment matrix and improve LLE
alignment matrix. The experiments have demonstrated both
formulations are comparable to each other while in many cases
the CSS formulation is slightly better than the SS formulation.
The experiment also demonstrated that the SS formulation
based on the iLLE alignment matrix is comparable to both
LEE and Laplacian alignment matrices. A similar approach
[8] can be used for further edge preservation constraint. This
kind of observation is intuitively encouraging for manifold
learning methods to be successful in image matting.

Copyright © 2013 the Authors
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