
IT in Industry, vol. 3, no. 1, 2015 Published online 31-Mar-2015

 ISSN (Print): 2204-0595

Copyright © Authors 1 ISSN (Online): 2203-1731

Instance Selection and Optimization of Neural Networks

Zongyuan Zhao, Shuxiang Xu, Byeong Ho Kang,

Mir Md Jahangir kabir

School of Computing and Information Systems

University of Tasmania

 Tasmania, Australia

Yunling Liu
*

College of Information and Electrical Engineering

China Agricultural University

Beijing, China

lyunling@163.com

Abstract— Credit scoring is an important tool in financial

institutions, which can be used in credit granting decision. Credit

applications are marked by credit scoring models and those with

high marks will be treated as “good”, while those with low marks

will be regarded as “bad”. As data mining technique develops,

automatic credit scoring systems are warmly welcomed for their

high efficiency and objective judgments. Many machine learning

algorithms have been applied in training credit scoring models,

and ANN is one of them with good performance. This paper

presents a higher accuracy credit scoring model based on MLP

neural networks trained with back propagation algorithm. Our

work focuses on enhancing credit scoring models in three

aspects: optimize data distribution in datasets using a new

method called Average Random Choosing; compare effects of

training-validation-test instances numbers; and find the most

suitable number of hidden units. Another contribution of this

paper is summarizing the tendency of scoring accuracy of models

when the number of hidden units increases. The experiment

results show that our methods can achieve high credit scoring

accuracy with imbalanced datasets. Thus, credit granting

decision can be made by data mining methods using MLP neural

networks.

Keywords— Back propagation; credit scoring; multilayer

perceptron; neural network

I. INTRODUCTION

Credit scoring, or credit rating, has been widely used in
banks and other financial institutes. It is the set of decision
models and their underlying techniques that help lenders judge
whether an application of credit should be approved or rejected
[1, 2]. Currently credit rating can be divided into two general
categories: new credit application judgement and prediction of
bankrupt after lending. The first kind uses personal information
and financial status of a loan applicant as inputs to calculate a
score. If the score is higher than a “safe level”, the applicant
has high possibility to preform good credit behaviour. On the
contrary, a low score indicates high risk loan so the lender
needs to take careful consideration of the application. The other
kind of credit scoring focuses on the credit record of existing
customers. This paper focuses on application scoring.

Compared with traditional credit scoring which is achieved
by professional bank managers, automatic scoring has some
obvious advantages: it saves costs and time for evaluating new
credit applications; it is consistent and objective [3]. However,
some current computational approaches are not as capable as
experienced loan experts on judgement accuracy. The

performances of automatic credit rating are always hindered by
imbalanced datasets, complex attributes and shortage of the
chosen data mining algorithms.

In recent years, artificial intelligence has shown its
advantages in credit scoring comparing with linear probability
models, discriminant analysis and other statistical techniques
[4]. Among those artificial intelligent models, Multilayer
perception (MLP) models are widely utilized [2, 5, 6] and
shown competitive prediction ability against other methods [7,
8]. In [9] back-propagation (BP) algorithm was developed and
now has been mostly used in training MLP. Improvements of
neural networks include altering the ratios of training and
testing datasets, the number of hidden nodes, and the training
iterations. A nine learning schemes with different training-to-
validation data ratios was investigated and got the
implementation results with the German datasets [10]. They
concluded that the learning scheme with 400 cases for training
and 600 for validation performed best with an overall accuracy
rate of 83.6%. Emotional neural network [11] is a modified BP
learning algorithm. It has additional emotional weights that are
updated using two additional emotional parameters: anxiety
and confidence. When comparing emotional neural networks
with conventional networks for credit risk evaluation,
experimental results showed that both models were effective,
but the emotional models outperformed the conventional ones
in decision making speed and accuracy [12].

As reported in [3], RBF, LS-SVM and BP classifiers yield
high performances on eight different credit scoring datasets. At
the same time LDA and LOG also get good results, which
indicate that the linear classifiers can also be available [4].
Several automatic scoring models also prove this result using
the German, Australian and Japanese credit datasets [5]. In
their experiments, C4.5 decision tree performed a little better
than MLP on credit scoring but both of them are with high
accuracies. On the contrary, Nearest Neighbor and Naïve
Bayes classifiers appeared to be the worst in their tests.

Optimization on the ratios of training and testing datasets,
the number of hidden nodes, and the training iterations can
have positive effect on refining the performance of MLP.
Using the German datasets, an experiment is designed to test
the performances of MLPs with various ratios of training-
validation instances [6]. In their tests, the learning scheme with
400 cases for training and 600 for validation performed best
regarding to the overall accuracy rate. The number of hidden
nodes is also considered in their tests, as they conduct their

*corresponding author

IT in Industry, vol. 3, no. 1, 2015 Published online 31-Mar-2015

 ISSN (Print): 2204-0595

Copyright © Authors 2 ISSN (Online): 2203-1731

tests with MLPs that contains three different numbers of
hidden nodes. However, their tests only consider some cases
and could not lead to a general conclusion. Emotional neural
network [7] has additional emotional weights that are updated
using two additional emotional parameters: anxiety and
confidence. It is a modified BP learning algorithm. The
emotional models, as tested in experiments, outperformed the
conventional ones in both speed and accuracy [8]. Artificial
meta plasticity MLP is efficient when fewer patterns of a class
are available or when information inherent to low probability
events is crucial for a successful application. The accuracy of
this model is 84.67% for the German dataset, and 92.75% for
the Australian dataset [9].

In [10], a two-stage hybrid modelling procedure with ANN
and multivariate adaptive regression splines (MARS) is
designed. After using MARS in building the credit scoring
model, the obtained significant variables then served as the
input nodes of ANN. However, ensemble system performed
better only in one of the three datasets in the experiments of
[11]. MLP is compared with multiple classifiers and classifier
ensembles. Tests demonstrate that the ability of hybrid system
is not better than usual methods.

As to other methods, support vector machine (SVM) and
genetic algorithm (GA) are also used for credit rating with
good performance. SVM model can be refined by reduction of
features using F score and took a sample instead of a whole
dataset to create the credit scoring model [12]. Test results
showed that this method was competitive in the view of
accuracy as well as computational time. In [13], they selected
important variables by GA to combine bank’s internal
behavioral rating model and an external credit bureau model.
This dual scoring model underwent more accurate risk
judgment and segmentation to further discover the parts which
were required to be enhanced in management or control from
mortgage portfolio. Other than SVM and GA, Clustering-
Launched Classification (CLC) is also available and may
perform better than SVM [14]. A multi-criteria quadratic
programming (MCQP) model was proposed based on the idea
of maximizing external distance between groups and
minimizing internal distances within a certain group [15]. It
could solve linear equations to find a global optimal solution
and obtained the classifier and at the same time used kernel
functions to solve nonlinear problems. Comparing with SVM it
seemed more accurate and scalable to massive problems.
Decision tree (DT) is another good alternative method.

Recently, imbalanced datasets (where instances belonging
to one class heavily outnumber instances in other classes) have
attracted attention and some work has shown that appropriate
ratios of different kinds of instances can augment classification
accuracy. In [15], they used five real-world datasets to test the
effect of good/bad credit instance ratio. Results showed that
linear discriminant analysis (LDA) and logistic regression
(LOG) performed acceptable rating accuracy with both slightly
imbalanced datasets and highly imbalanced ones. To avoid the
effect of imbalance data distribution, dynamic classifier and
dynamic ensemble selection of features were added in the
scoring model, which performed better than static classifiers
[16].

Imbalance datasets can also bring bias to the evaluation of
credit rating models. Traditionally, the performance of credit
rating is evaluated by average accuracy. However, this value is
highly susceptible by the imbalance number of instances, if one
kind of instances is highly outnumbered the other. For example,
if the credit rating model decided that every instance is “good”,
and the ratio of good and bad instances is 9:1, then the
accuracy of this “silly” credit rating model will be 90%. This is
obviously unacceptable. In this paper, both accuracy and
another evaluation model called Area Under Curve (AUC) will
be used in experiments and the details of AUC will be
introduced.

In general, neural network with back propagation algorithm
can score credit applications with high performance. However,
there are still some problems for this model. Firstly, as the
ratios of approved and rejected instances in the datasets are
usually not balanced and sometimes highly imbalanced, the
training process of a model may have to deal with more
approved instances than rejected ones. This may cause bad
performance when applying the learned model to the test
datasets. Secondly, the numbers of instances used in test,
validation and training sets are always limited. More data used
in training means less used in validation and test, which may
result in low accuracy. As all the three parts need as much
instances as possible, the distribution of data is vital for the
final test results. At last, the number of hidden units affects the
accuracy and the time costs of a model. More hidden units may
lead to high computing time but insufficient units cannot
achieve high accuracy. The appropriate number can only be
known by experiments with different models and choose the
best according to the test results.

In order to solve these problems, three aspects of the MLP
will be discussed in this paper: (1) Optimise the ratio of
approved/rejected cases in input instances. (2) Test the effect of
different ratios of training-validation-testing data. (3) Improve
the structure of MLP network.

II. DATASET

There are many open credit dataset available on the website
of UCI Machine Learning Repository [5]. Among those
datasets, the German dataset is a real world dataset with 21
features including 20 attributes recording personal information
and financial history of applicants. The last feature is labelled
as approved (marked as 1) or rejected (marked as 2). This
dataset contains 1000 instances, with 700 approved application
instances and 300 rejected ones. These instances are presented
randomly. Attribute details of this dataset are listed in Table 1.
In this table, some attributes are numerical but others are
qualitative and hard to be computed in training of neural
networks. Thus, a numerical version of the dataset is used in
this work. It transforms all qualitative variables to numeric and
adds four more attributes.

The German credit dataset is widely used as a benchmark
and has many scoring models. In recent years different models
have been utilized on this dataset to solve credit scoring
problems. The accuracies of some representative models are
listed in Table 2.

IT in Industry, vol. 3, no. 1, 2015 Published online 31-Mar-2015

 ISSN (Print): 2204-0595

Copyright © Authors 3 ISSN (Online): 2203-1731

TABLE I. ATTRIBUTES OF THE GERMEN CREDIT DATASET

Number Description Class

attribute 1 Status of existing checking account qualitative

attribute 2 Duration in month numerical

attribute 3 Credit history qualitative

attribute 4 Purpose qualitative

attribute 5 Credit amount numerical

attribute 6 Savings account/bonds qualitative

attribute 7 Present employment since qualitative

attribute 8 Instalment rate in percentage of
disposable income

numerical

attribute 9 Personal status and sex qualitative

attribute 10 Other debtors / guarantors qualitative

attribute 11 Present residence since numerical

attribute 12 Property qualitative

attribute 13 Age in years numerical

attribute 14 Other instalment plans qualitative

attribute 15 Housing qualitative

attribute 16 Number of existing credits at this bank numerical

attribute 17 Job qualitative

attribute 18 Number of people being liable to
provide maintenance for

numerical

attribute 19 Telephone qualitative

attribute 20 Foreign worker qualitative

TABLE II. ACCURACY OF SOME REPRESENTATIVE MODELS

Article Scoring Models Accuracy (%)

[9] MLP 84.67

[16] Ensemble 82.03

[17] LS-SVM 81.9

[18] MLP 81.3

[8] MLP 81.03

[12] SVM 80.42

[19] DT 78.52

[20] Re-Rx 78.47

[21] SVM 78.46

[22] Case-based reasoning model 77.4

[23] SVM 76.6

[24] SVM 75.4

[25] SVM 71.8

Some of the accuracies as listed are average rates in a group
of models and others are the best one. The “scoring models” in
table 1 are basic models used in experiments and many of them
have been improved. From this table we can see that the
highest accuracy is 84.67±1.5% achieved by [18] using MLP
model. This table only includes some results from journal
papers published between 2011 and 2013. There were lots of
experiments published in previous years but the accuracies
were not better.

III. METHEDOLOGY

A. Average Random Choosing Method

In this paper, we designed an average random choosing
(ARC) method to select instances from datasets, which is used
to improve training effects and model accuracy.

The imbalance of data classes (where instances belonging
to one class heavily outnumber instances in other classes)
usually exist in credit datasets. Thus, in the training of neural
networks there should be more instances of approved
applications in order to get a better scoring model. From the
point of test, as the original dataset is imbalanced, it is

reasonable to keep the same ratio (approved/failed) in the test
dataset.

Another problem of data processing is the ratio of training-
validation-test sets. All three sets should have proper amount of
instances. Usually, more instances for training can lead to
better chance to get a better model. However, as the amount of
data is limited, more data used for training means less for
validation and test, which will cause unpredictable test
performance.

Usually when given a dataset containing both training and
test data, the instances that used for training, validation and test
are chosen randomly. For balanced dataset, this will cause
imbalance distribution slightly and occasionally, which will
hardly bring any problems. However, when the dataset is
imbalanced, random choosing method will easily aggravate the
imbalance problem. For example, if the training instance group
is less imbalanced, which seems to be good for training, then
the test group will be higher imbalanced and makes the
evaluation of credit rating model biased.

To solve these problems, we propose a method called ARC
to pre-process data and generate average number of different
instanced in each data group such as training and test. Suppose
the total number of instances is n, and the ratio of good
applications in the dataset is p. Then the numbers of good and
bad applications are

Good applications: p ∗ n ,
Bad applicaions: (1 − p) ∗ n

Then suppose the ratio of data used in training is t and in
validation is v. Then we have

Training data: n ∗ t
Validation data: n ∗ v

Test data: n ∗ (1 − t − v)

As we want the ratio of good to bad applications stays the
same in training data (as in original data), the training,
validation and test data can be divided into good cases and bad
cases. The flow of processing data is listed in Figure 1.

Original Credit
Dataset

Good Instances
n*p

Bad instances
n*(1-p)

Training dataset
n*t

Validation dataset
n*v

Test dataset
n*(1-t-v)

1-p

p

Fig. 1. Flow of data processing and the amount of instances in each group

From the original dataset, two different kinds of data, bad
instances and good instances are divided into two groups. Then
both of them are divided into training, validation and test
datasets randomly. This step should be repeated for each new
network training session, which can minimize the effect of

IT in Industry, vol. 3, no. 1, 2015 Published online 31-Mar-2015

 ISSN (Print): 2204-0595

Copyright © Authors 4 ISSN (Online): 2203-1731

unordinary instances. This way, it is more likely to get a good
data distribution which promotes a good scoring model. The
algorithm can be described as follows:

The function randperm(n) returns n different integer
numbers. It is used to randomly select n different samples from
an instance group.

By this method, all groups (training, validation and test)
have the same ratio of good to bad instances. Traditional 10-
fold validation method divides a dataset into 10 blocks of data
randomly before training starts. It is not really random
choosing and is not fit for imbalanced dataset. In some extreme
cases, there could be one group with only one class of data.
This is obviously unable to judge the performance of the
model. Our average random method chooses instances
randomly from both classes of data. It can choose data
randomly which ensures more instance combinations can be
used for training. Also the datasets of training, validation and
test have the same ratio of instances.

B. NN and MLP Scoring Mode

A neural network is a massively parallel distributed
processor made up of simple processing units, which has a
natural propensity for storing experiential knowledge and
making it available for use [26]. It was motivated by inspecting
the human brain, which has high efficiency in computing and

recognizing [27]. According to the structure of networks, it can
be divided as single layer feed forward networks, multilayer
feed forward networks and recurrent networks. Feed forward
networks do not have any feedback loop, which are different
from recurrent networks.

ANNs are made of neurons, or called simple perceptron.
The structure of neuron is shown in Fig 2. Each neuron is
composed of two units. First unit adds products of weights
coefficients and input signals. The second unit realizes
nonlinear function, called neuron activation function. Signal e
is adder output signal, and y = f(e) is output signal of nonlinear
element. Signal y is also output signal of neuron.

A typical feed forward network is multilayer perceptron
(MLP). Other kinds of feed forward networks include single
layer networks, radial basis function networks, support vector
machine and others. Among them, MLP has better
performance when applying on some models, especially for
complex models and nonlinear classification problems [28].
This research use MLP neural networks to construct a credit
rating model.

A three layer MLP model will be developed in this
research. The basic structure is demonstrated in Fig 3. The first
layer is the input layer with 24 neurons since the dataset
contains 24 input features (attributes). The last layer is the
output layer with only one neuron, which stands for the score
of an application. Only one hidden layer is used to reduce
computing complexity.

The number of hidden neurons can have great impact on
the performance of the network. Here we build 34 different
MLP models, with the number of hidden units varying from 6
to 39. The model with highest classification accuracy will be
chosen out. Our experiment results also prove that this scope is
large enough since some of the models can achieve high
accuracies.

Neural networks cannot work without “learning”. The
learning procedure is realized by learning algorithms, which
calculate the weights of each neuron in the network. Based on
the structure of NN, learning algorithms can be divided into
supervised learning and unsupervised learning. In this paper, as
the dataset has an outcome attribute, supervised learning will
be used to obtain a MLP model for classification. The most
popular learning algorithms for feed forward networks include
back propagation (BP), radial basis function (RBF) and others
[29].

f(e) y

x1

x2

w1

w2

x1

x2

w1

w2

Summing

junction

Non-linear

element

f(e)

e=x1w1+x2w2 y=f(e)

Fig. 2. Structure of neuron

Algorithm ARC

Original Dataset D={xi, ti |i=0,1…n}

1. Select out all samples of class A A={xi, ti |ti=1}

2. Select out all samples of class B B={xi, ti |ti=2}

3. Select instances for test from class A

TA={xi, ti | i =randperm(n*p*(1-t-v)), (xi, ti)∈A}

4. Select instances for test from class B

TB={xi, ti | i =randperm(n*(1-p)*(1-t-v)), (xi, ti)∈B}

5. The test instances group T=TA∪TB

6. Samples in class A that are used to train and validate

SA=A-TA

7. Samples in class B that are used to train and validate

SB=B-TB

8. while(not reach the max epoch)

9. Choose out samples used for training in class A

SAt={xi, ti |i=randperm(n*p*t), (xi, ti)∈SA}

10. Choose out samples used for training in class B

SBt={xi, ti |i=randperm(n*(1-p)*t), (xi, ti)∈SB}

11. The training group is St= SAt+ SBt

12. The validation group is Sv=(SA- SAt)∪(SB- SBt)

13. Calculate output

𝑦𝑖 = ∅(∑ 𝑤𝑠∅(∑ 𝑤𝑠𝑟
𝑛
𝑟=0 𝑥𝑟))ℎ

𝑠=0 , xr∈St

14. Update MLP by BP. Error signal is

e(i)=ti-yi ti∈St

15. Validate MLP

𝑦𝑖 = ∅(∑ 𝑤𝑠∅(∑ 𝑤𝑠𝑟
𝑛
𝑟=0 𝑥𝑟))ℎ

𝑠=0 , xr∈Sv

16. Performance of MLP v =
∑ 𝑒(𝑖)𝑛∗𝑣

𝑖=0

𝑛∗𝑣

17. if(v>v0) stop training

18. else v0=v

19. end while

IT in Industry, vol. 3, no. 1, 2015 Published online 31-Mar-2015

 ISSN (Print): 2204-0595

Copyright © Authors 5 ISSN (Online): 2203-1731

In this paper, back propagation algorithm will be used in
the training of MLP models. It is widely used in the training of
MLP and proved to be effective for supervised training. The
basic idea of BP is to update the weights of each connection by
the difference of the outputs of the model and outputs in
datasets. Initial weights will be given randomly in a range and
the algorithm will stop if it meets the stopping criteria. It has
been proved that the weights can converge in finite iterations.
The algorithm of BP utilized on a MLP with one hidden layer
can be described as follows:

Initialize network weights (often small random values)

Do

for each training example ex

prediction = neural-net-output(network, ex)

// forward pass

actual = teacher-output(ex)

compute error (prediction - actual) at the output units

compute ∆𝑤ℎfor all weights from hidden layer to

output layer // backward pass

compute ∆𝑤𝑖 for all weights from input layer to

hidden layer // backward pass continued

update network weights

until all examples classified correctly or another stopping

criterion satisfied

return the network

During the procedure of training, validation is used to
control over-fitting. As the iteration goes on, the error rate of
the network goes down until it reaches the lowest point. After
that point, the error rate will not fall down any more and even
rise. This is called over training or over fitting and the training
procedure should be stopped when the error rate reaches the
lowest point. Here we use some data to validate the network
after each iteration. Validation data are not used to train the
network, and they are more like the test data. After each
iteration, we calculate the error rate with validation data and
compare it with the result of the last iteration. If the new one is
larger, then the iteration stops immediately. Else, the training
and validation process goes on. In this way, we can avoid over
fitting.

.

.

.

.

.

.

Input layer Hidden layer output layer

Fig. 3. Structure of a 3 layer MLP model.

C. Area Under Curve

Traditionally, classification accuracy is used to judge the
“goodness” of feature group. Recently the Area Under Curve
(AUC) have been proved to be a good alternative [30]. It was
initially used as an evaluation function in Feature Selection to
rank features in [31] and [32]. It was later extended to multi-
class in [33] and test results showed that AUC has better
performance than traditional overall accuracy (OA).

Define an experiment from P positive instances and N
negative instances for some condition. The four outcomes can
be formulated in a 2*2 contingency table or confusion matrix,
as in table 3 [34].

TABLE III. FOUR OUTCOMES OF AN EXPERIMENT

Condition

Positive Negative

Test

outcome

Positive True positive
False positive

(Type 1 error)

Precision=

Negative
False negative

(Type 2 error)
True negative

Negative predictive value=

Sensitivity=

Specificity=

Accuracy

∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑ 𝑇𝑢𝑟𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝑇𝑢𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑣𝑒

∑ 𝑇𝑒𝑠𝑡 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑ 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝑇𝑒𝑠𝑡 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

IT in Industry, vol. 3, no. 1, 2015 Published online 31-Mar-2015

 ISSN (Print): 2204-0595

Copyright © Authors 6 ISSN (Online): 2203-1731

A receiver operating characteristic (ROC) space is defined
by false positive rate (FPR) and true positive rate (TPR) as x
and y axes respectively, as shown in Fig 4. Write the
probability for belonging in the class as a function of a
decision/threshold parameter T as P1(T) and the probability of
not belonging to the class as P0(T). The false positive rate FPR

is given by FPR(T) = ∫ 𝑃0(𝑇) 𝑑𝑇
∞

𝑇
 and the true positive rate is

TPR(T) = ∫ 𝑃1(𝑇) 𝑑𝑇
∞

𝑇
. The ROC curve plots parametrically

TPR(T) versus FPR(T) with T as the varying parameter. The
area under the curve (AUC) of ROC is equal to the probability
that a classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative one (assuming
'positive' ranks higher than 'negative') [30].

IV. EXPERIMENTS AND RESULTS

Experiments are designed to test the effective of our new
instance selection method and find out a better MLP model.
There are three aspects of the experiments. The first aspect is to
find out the best amount of data used in training, validation and
test, respectively. Then based on the results, the second aspect
is to focus on our new instance choosing method. Thirdly, we
discuss about the number of hidden neurons by training each
model 20 times with different initial weights for each kind of
model in all experiments. All instances for training, validation
and test are randomly chosen. The best and average error rates
are listed and discussed.

A. Ratio of Training-Validation-Test

In the experiments, we use 3 different ratios of data,
800:100:100, 900:50:50 and 600:200:200 to find out the most
suitable one. To be more accurate, all groups of data are chosen
randomly from the German dataset. The number of hidden
neurons varies from 6 to 39, which ensures that every group
can get their best model. Also each kind of model is trained 20
times. We record the lowest error rate and average rate of each
kind of model. Test results are listed in Table 5.

The result shows that a ratio of 800:100:100 performs
better in nearly all aspects in regards to accuracy rate. The
lowest error rate, 0.17, is achieved with 15 hidden units which
is also the best model of all. The average of error rate can
indicate an overall performance of some model groups. The
model with 10 hidden units seems more stable, with an average
error rate of 0.2295 which is lower than the others. For all
models, the average lowest error rate is around 0.208,
indicating that it is more likely to get a very low error rate with
this training-validation-test ratio.

The ratio of 600:200:200 gives more data to testing, which
leads to insufficient data for training. Thus it gets high error

rates in regards to both the lowest value and the average value.
Although the ratio 900:50:50 has more instances for training
and the lowest error rate is very close to the best one, the
shortness of testing data leads to a high average value, which
means there is a low possibility to get a good model.

B. Average Random Choosing method

In this section, we compare models trained by data from
our Average Random Choosing (ARC) method. Nothing has
changed except that we control the percentage of
approved/rejected instances in each dataset. The overall
percentage is 70% for approved instances and 30% for rejected
instances. So this ratio stays the same in training, validation
and test data groups. The ratio of training-validation-test is
800:200:200, which performs best in our previous tests. The
results are listed on Table 4.

Comparing with the traditional instances divide methods,
which randomly divide different kinds of instances in test,
validation and training, our new method obviously outperforms
the others. As to the AUC, the ARC method performs much
better than the other methods, especially the 900:50:50 group,
because class imbalance problem is very serious in that group.

Fig. 4. Area Under Curve (AUC)

TABLE IV. AUCS AND ACCURACIES OF ARC METHOD COMPARING WITH OTHER METHODS

Divide rate 800:100:100 900:50:50 600:200:200 ARC method

Evaluation method AUC
Average
Accuracy AUC

Average
Accuracy AUC

Average
Accuracy AUC

Average
Accuracy

9 hidden neurons 0.71 0.762 0.58 0.769 0.69 0.724 0.76 0.80

Best of all 0.73 0.771 0.62 0.769 0.71 0.738 0.76 0.80

IT in Industry, vol. 3, no. 1, 2015 Published online 31-Mar-2015

 ISSN (Print): 2204-0595

Copyright © Authors 7 ISSN (Online): 2203-1731

As we can see in Table 4, the accuracy may be higher than
AUC value. That is because AUC is more objective than
accuracy when the dataset is imbalanced. For example, if the
MLP classifier output 1 in all case, no matter what the input is.
Then the accuracy will be 70% since this class occupies 70%
instances in the test dataset. In extreme cases, if there are 90%
of instances in one class and 10% in the other, this “dull”
classifier will have 90% classification accuracy, while the
AUC is only 50%. Thus, if the dataset is imbalanced, AUC
should be used as the evaluation method of classifiers.

Test results show that better organized data can enhance
model performance especially when the dataset is imbalanced
between its classes. As the German dataset is a real world
application, our Average Random Choosing method can be
easily generalized to handling other datasets. Also, the test
results proved that AUC is a more objective evaluation method
when the training data set has class imbalance problem. The
average accuracy may be biased and cannot reflect the real
performance of MLP models.

C. Number Of Hidden Neurons

In Table 5 we also list the result of validation for each kind
of model, including the lowest and average rates among the 20
different models. As to the error rates in tests, the lowest ones
seem to have been achieved when the number of hidden neuron
is 9, or 10, or 12, respectively. However, with these numbers,
many other models also get competitive results. When the
number of hidden units is 6, 14, 16, 19, 24, 26, 35, 36 and 39,
the lowest rate is 0.14 which is only a little higher than 0.13 so
it can still be regarded as good models. As to the average rate,
the model with 9 hidden neurons gets the lowest one which is
0.2085. But the average of all models is only 0.223, which
means that there is little difference between models when only
accuracy is considered. So there is no ubiquitous principle for
the relationship between the number of hidden neurons and the
accuracy of a model.

However, computation time is also very important to neural
network research. More hidden neurons can lead to more
computation time. Thus, if some models produce the same
accuracy, the one with less hidden neurons is preferred. In our
experiments, the network with 9 hidden neurons wins out in
most cases (Shown in Table 5). So this model is chosen as the
most suitable for the German credit dataset in our experiments.

D. Summary

In the first round of experiments, the 800: 100: 100
combinations get the highest accuracy so this ratio is most
suitable for building an acceptable model. After that, we use
our Average Random Choosing method to optimize the dataset.
The ratio of approved/rejected instances in German dataset,
7:3, is precisely implemented in the datasets for training,
validation and testing. Results show that our new method can
remarkably enhance the accuracy and AUC value, compared
with the traditional methods. Finally, models with 9 hidden
units perform best among all models, in consideration of high
accuracy and low computational time. Also we find an
interesting relationship between number of hidden neurons and
validation accuracy: the more hidden units a model has, the
higher accuracy it may get when validated.

Compared with the results in other relevant articles with the
same benchmark dataset, our model achieves a high accuracy
of 87%, which is almost higher by 5% than the best result
reported in the relevant literature so far. Our best model
contains 9 hidden neurons, using our Average Random
Choosing method. The ratio of training-validation-test data is
800:100:100. If we take validation results into consideration,
the highest accuracy reaches 92%, which is almost 10% higher
than the best result from existing models.

It is more interesting when checking the validation error
rates. As validation data is also a kind of test data (but with a
different purpose), the error rate of validation is proper to
reflect the prediction ability. It is always higher than accuracy
of test data because a training process will not stop until a
validation gets high accuracy. In our experiments, the accuracy
of validation can reach almost 0.92 with 38 hidden units in the
model. It is 0.05 higher than the best result with test data.
Although this value is not as objective as the accuracy from
pure test data, it indicates that MLP model has the ability of
rating credit application more precisely. Also, there is an
interesting tendency found in the validation dataset. As the
number of hidden units gets larger, this error rates seems to be
lower. It is shown in Fig. 5.

V. CONCLUSIONS

In this paper, we designed a new instance selection method
called Average Random Choosing method. It is used to solve
highly imbalanced dataset problems. Experiments demonstrate
that this method can improve MLP model accuracy in some
extent. It could also be used in other dataset and real world
problems.

We also designed a MLP model for credit rating with high
accuracy compared with other works that utilized the same
dataset. Our experiment test 36 models with different number
of hidden nodes, and 3 kinds of training with distinctive ratio
of training-validation-test instances.

From the results of our experiments, the accuracy of
classification has a trend of declining with raising number of
hidden nodes. The most valuable contribution of this paper is
presenting a MLP model with high credit rating accuracy.

Fig. 5. Tendency of model’s error rates when numbers of hidden units

increase

0.05

0.10

0.15

0.20

0.25

0.30

6 9 12 15 18 21 24 27 30 33 36 39

average

lowest

V
alid

atio
n

 E
rro

r

Number of hidden neurons

IT in Industry, vol. 3, no. 1, 2015 Published online 31-Mar-2015

 ISSN (Print): 2204-0595

Copyright © Authors 8 ISSN (Online): 2203-1731

TABLE V. TEST RESULTS OF GERMEN CREDIT DATASET

800:100:100 900:50:50 600:200:200 Average Random Choosing method

Number of

hidden
neurons

Lowest

error
rate

Average
error rate

Lowest
error rate

Average
error rate

Lowest
error rate

Average
error rate

Lowest test
error rate

Average
error rate

lowest

validate
error rate

average

validate
error rate

6 0.21 0.2415 0.21 0.2925 0.245 0.273 0.14 0.2145 0.1265 0.1502

7 0.21 0.251 0.2 0.251 0.225 0.273 0.15 0.211 0.1228 0.1441

8 0.19 0.239 0.21 0.2765 0.22 0.2615 0.17 0.2215 0.1231 0.1438

9 0.18 0.2385 0.18 0.2315 0.245 0.27675 0.13 0.2085 0.1284 0.1472

10 0.18 0.2295 0.2 0.243 0.24 0.27075 0.13 0.221 0.1270 0.1471

11 0.2 0.242 0.18 0.2635 0.225 0.26275 0.16 0.223 0.1234 0.1439

12 0.21 0.246 0.19 0.2675 0.23 0.26575 0.13 0.225 0.1297 0.1491

13 0.2 0.256 0.21 0.2705 0.2 0.26625 0.16 0.2225 0.1163 0.1431

14 0.21 0.258 0.19 0.258 0.205 0.26525 0.14 0.2105 0.1113 0.1407

15 0.17 0.2595 0.21 0.26 0.24 0.2715 0.16 0.219 0.1103 0.1422

16 0.22 0.246 0.23 0.26 0.23 0.266 0.14 0.2085 0.1245 0.1399

17 0.19 0.248 0.21 0.245 0.235 0.2745 0.19 0.2415 0.1196 0.1433

18 0.21 0.2595 0.21 0.293 0.21 0.26725 0.17 0.221 0.1022 0.1342

19 0.2 0.255 0.24 0.277 0.235 0.28 0.14 0.2135 0.1124 0.1407

20 0.21 0.2585 0.21 0.262 0.22 0.2655 0.16 0.2215 0.1006 0.1402

21 0.22 0.256 0.21 0.2835 0.24 0.2665 0.16 0.215 0.1207 0.1368

22 0.2 0.2545 0.22 0.2985 0.23 0.26475 0.15 0.2195 0.1217 0.1351

23 0.19 0.259 0.21 0.2675 0.24 0.27075 0.18 0.2265 0.1143 0.1353

24 0.19 0.26 0.2 0.26 0.245 0.27375 0.14 0.215 0.1249 0.1377

25 0.22 0.257 0.21 0.2845 0.24 0.27175 0.15 0.223 0.1007 0.1394

26 0.22 0.2725 0.19 0.276 0.235 0.28575 0.14 0.224 0.0884 0.1310

27 0.2 0.261 0.22 0.287 0.24 0.2735 0.17 0.2175 0.1227 0.1380

28 0.21 0.2625 0.23 0.2755 0.235 0.2755 0.15 0.2235 0.1123 0.1345

29 0.21 0.262 0.19 0.266 0.225 0.273 0.15 0.2265 0.1100 0.1339

30 0.23 0.2765 0.23 0.278 0.21 0.2665 0.15 0.2275 0.0916 0.1304

31 0.24 0.2715 0.23 0.2775 0.25 0.28575 0.18 0.228 0.0892 0.1283

32 0.22 0.265 0.2 0.2775 0.245 0.272 0.18 0.234 0.1013 0.1295

33 0.23 0.2755 0.22 0.273 0.245 0.27725 0.17 0.2345 0.1070 0.1287

34 0.22 0.272 0.22 0.281 0.24 0.28575 0.17 0.228 0.1023 0.1285

35 0.22 0.2675 0.22 0.2885 0.235 0.28225 0.14 0.229 0.0932 0.1243

36 0.24 0.2835 0.19 0.285 0.245 0.2895 0.14 0.2275 0.1055 0.1311

37 0.22 0.278 0.23 0.3175 0.225 0.29125 0.16 0.2265 0.0963 0.1258

38 0.17 0.28 0.22 0.301 0.21 0.27825 0.19 0.2385 0.0801 0.1324

39 0.24 0.294 0.2 0.284 0.235 0.284 0.14 0.2375 0.0854 0.1215

Best 0.17 0.2295 0.18 0.2315 0.2 0.2615 0.13 0.2085 0.0801 0.1215
Average 0.2082 0.25988 0.20941 0.27389 0.23161 0.27375 0.1553 0.2231 0.1102 0.1368

Further works may focus on feature selection for neural
networks, as attributes in dataset are not always relevant to
classification feature. The elimination of redundant features
is an important task in data mining. Also it should be noticed
that the performance of credit rating model is always
evaluated by accuracies. Other statistic methods, such as F-
score, standard deviation (SD) and others should be used to
help choose out better credit rating models.

ACKNOWLEDGMENT

This work is supported by National Key Technology
R&D Program of China during the 12th Five-Year Plan
Period (Project number: 2012BAJ18B07).

REFERENCES

[1] L.C. Thomas, D.B. Edelman, and J.N. Crook, “Credit Scoring and Its
Applications,” 2002: SIAM: Philadelphia, PA.

[2] H.L. Jensen, “Using Neural Networks for Credit Scoring,”
Managerial Finance, vol. 18, no. 6, pp. 15, 1992.

[3] B. Baesens, et al., “Benchmarking State-of-the-Art Classification
Algorithms for Credit Scoring,” The Journal of the Operational
Research Society, vol. 54, no. 6, pp. 627-635, 2003.

[4] A.I. Marqués, V. García, and J.S. Sánchez, “Exploring the behaviour
of base classifiers in credit scoring ensembles,” Expert Systems with
Applications, vol. 39, no. 11, pp. 10244-10250, 2012.

[5] K. Bache and M. Lichman. {UCI} Machine Learning Repository.
2013; Available from: http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml

IT in Industry, vol. 3, no. 1, 2015 Published online 31-Mar-2015

 ISSN (Print): 2204-0595

Copyright © Authors 9 ISSN (Online): 2203-1731

[6] A. Khashman, “Neural networks for credit risk evaluation:
Investigation of different neural models and learning schemes,”
Expert Systems with Applications, vol. 37, no. 9, pp. 6233-6239,
2010.

[7] A. Khashman, “A Modified Backpropagation Learning Algorithm
With Added Emotional Coefficients,” IEEE Transactions on Neural
Networks, vol. 19, no. 11, pp. 1896-1909, 2008.

[8] A. Khashman, “Credit risk evaluation using neural networks:
Emotional versus conventional models,” Applied Soft Computing, vol.
11, no. 8, pp. 5477-5484, 2011.

[9] A. Marcano-Cedeño, et al., “Artificial metaplasticity neural network
applied to credit scoring,” International Journal of Neural Systems,
vol. 21, no. 4, pp. 311-317, 2011.

[10] T.-S. Lee and I.F. Chen, “A two-stage hybrid credit scoring model
using artificial neural networks and multivariate adaptive regression
splines,” Expert Systems with Applications, vol. 28, no. 4, pp. 743-
752, 2005.

[11] C.-F. Tsai and J.-W. Wu, “Using neural network ensembles for
bankruptcy prediction and credit scoring,” Expert Systems with
Applications, vol. 34, no. 4, pp. 2639-2649, 2008.

[12] A.B. Hens and M.K. Tiwari, “Computational time reduction for credit
scoring: An integrated approach based on support vector machine and
stratified sampling method,” Expert Systems with Applications, vol.
39, no. 8, pp. 6774-6781, 2012.

[13] B.-W. Chi and C.-C. Hsu, “A hybrid approach to integrate genetic
algorithm into dual scoring model in enhancing the performance of
credit scoring model,” Expert Systems with Applications, vol. 39, no.
3, pp. 2650-2661, 2012.

[14] S.-T. Luo, B.-W. Cheng, and C.-H. Hsieh, “Prediction model building
with clustering-launched classification and support vector machines
in credit scoring,” Expert Systems with Applications, vol. 36, no. 4,
pp. 7562-7566, 2009.

[15] Y. Peng, et al., “A Multi-criteria Convex Quadratic Programming
model for credit data analysis,” Decision Support Systems, vol. 44,
no. 4, pp. 1016-1030, 2008.

[16] J. Xiao, et al., “Dynamic classifier ensemble model for customer
classification with imbalanced class distribution,” Expert Systems
with Applications, vol. 39, no. 3, pp. 3668-3675, 2012.

[17] I. Brown and C. Mues, “An experimental comparison of classification
algorithms for imbalanced credit scoring data sets,” Expert Systems
with Applications, vol. 39, no. 3, pp. 3446-3453, 2012.

[18] M. Khashei, et al., “A bi-level neural-based fuzzy classification
approach for credit scoring problems,” Complexity, vol. 18, no. 6, pp.
46-57, 2013.

[19] G. Wang, et al., “Two credit scoring models based on dual strategy
ensemble trees,” Knowledge-Based Systems, vol. 26, pp. 61-68, 2012.

[20] R. Setiono, B. Baesens, and C. Mues, “Rule extraction from minimal
neural networks for credit card screening,” International Journal of
Neural Systems, vol. 21, no. 4, pp. 265-276, 2011.

[21] L. Yu, et al., “Credit risk evaluation using a weighted least squares
SVM classifier with design of experiment for parameter selection,”
Expert Systems with Applications, vol. 38, no. 12, pp. 15392-15399,
2011.

[22] S. Vukovic, et al., “A case-based reasoning model that uses
preference theory functions for credit scoring,” Expert Systems with
Applications, vol. 39, no. 9, pp. 8389-8395, 2012.

[23] Y. Ping and L. Yongheng, “Neighborhood rough set and SVM based
hybrid credit scoring classifier,” Expert Systems with Applications,
vol. 38, no. 9, pp. 11300-11304, 2011.

[24] G.B. Gonen, M. Gonen, and F. Gurgen, “Probabilistic and
discriminative group-wise feature selection methods for credit risk
analysis,” Expert Systems with Applications, vol. 39, no. 14, pp.
11709-11717, 2012.

[25] A.I. Marqués, V. García, and J.S. Sánchez, “On the suitability of
resampling techniques for the class imbalance problem in credit
scoring,” Journal of the Operational Research Society, vol. 64, no. 7,
pp. 1060-1070, 2013.

[26] S.S. Haykin, Neural networks : a comprehensive foundation / Simon
Haykin, 1999: Upper Saddle River, N.J. : Prentice Hall, c1999. 2nd
ed.

[27] D. West, “Neural network credit scoring models,” Computers and
Operations Research, vol. 27, no. 11-12, pp. 1131-1152, 2000.

[28] T. Karkkainen and E. Heikkola, “Robust formulations for training
multilayer perceptrons,” Neural Computation, vol. 16, no. 4, pp. 837-
862, 2004.

[29] L. Yuchun, “Handwritten digit recognition using k nearest-neighbor,
radial-basis function, and backpropagation neural networks,” Neural
Computation, vol. 3, no. 3, pp. 440-449, 1991.

[30] T. Fawcett, “An introduction to ROC analysis,” Pattern recognition
letters, vol. 27, no. 8, pp. 861-874, 2006.

[31] X.-W. Chen and M. Wasikowski, “FAST: a roc-based feature
selection metric for small samples and imbalanced data classification
problems,” in Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2008, ACM:
Las Vegas, Nevada, USA. pp. 124-132.

[32] R. Wang and K. Tang, “Feature Selection for Maximizing the Area
Under the ROC Curve,” in Proceedings of the 2009 IEEE
International Conference on Data Mining Workshops, 2009, IEEE
Computer Society, pp. 400-405.

[33] R. Wang and K. Tang, “Feature selection for MAUC-oriented
classification systems,” Neurocomputing, vol. 89, pp. 39-54, 2012.

[34] J. Fogarty, R.S. Baker, and S.E. Hudson, “Case studies in the use of
ROC curve analysis for sensor-based estimates in human computer
interaction,” in Proceedings of Graphics Interface 2005, Canadian
Human-Computer Communications Society: Victoria, British
Columbia. pp. 129-136.

