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Abstract— Credit scoring is an important tool in financial 

institutions, which can be used in credit granting decision. Credit 

applications are marked by credit scoring models and those with 

high marks will be treated as “good”, while those with low marks 

will be regarded as “bad”. As data mining technique develops, 

automatic credit scoring systems are warmly welcomed for their 

high efficiency and objective judgments. Many machine learning 

algorithms have been applied in training credit scoring models, 

and ANN is one of them with good performance. This paper 

presents a higher accuracy credit scoring model based on MLP 

neural networks trained with back propagation algorithm. Our 

work focuses on enhancing credit scoring models in three 

aspects: optimize data distribution in datasets using a new 

method called Average Random Choosing; compare effects of 

training-validation-test instances numbers; and find the most 

suitable number of hidden units. Another contribution of this 

paper is summarizing the tendency of scoring accuracy of models 

when the number of hidden units increases. The experiment 

results show that our methods can achieve high credit scoring 

accuracy with imbalanced datasets. Thus, credit granting 

decision can be made by data mining methods using MLP neural 

networks. 

Keywords— Back propagation; credit scoring; multilayer 

perceptron; neural network 

I.  INTRODUCTION 

Credit scoring, or credit rating, has been widely used in 
banks and other financial institutes. It is the set of decision 
models and their underlying techniques that help lenders judge 
whether an application of credit should be approved or rejected 
[1, 2]. Currently credit rating can be divided into two general 
categories: new credit application judgement and prediction of 
bankrupt after lending. The first kind uses personal information 
and financial status of a loan applicant as inputs to calculate a 
score. If the score is higher than a “safe level”, the applicant 
has high possibility to preform good credit behaviour. On the 
contrary, a low score indicates high risk loan so the lender 
needs to take careful consideration of the application. The other 
kind of credit scoring focuses on the credit record of existing 
customers. This paper focuses on application scoring.  

Compared with traditional credit scoring which is achieved 
by professional bank managers, automatic scoring has some 
obvious advantages: it saves costs and time for evaluating new 
credit applications; it is consistent and objective [3]. However, 
some current computational approaches are not as capable as 
experienced loan experts on judgement accuracy. The 
  

performances of automatic credit rating are always hindered by 
imbalanced datasets, complex attributes and shortage of the 
chosen data mining algorithms.  

In recent years, artificial intelligence has shown its 
advantages in credit scoring comparing with linear probability 
models, discriminant analysis and other statistical techniques 
[4]. Among those artificial intelligent models, Multilayer 
perception (MLP) models are widely utilized [2, 5, 6] and 
shown competitive prediction ability against other methods [7, 
8]. In [9] back-propagation (BP) algorithm was developed and 
now has been mostly used in training MLP. Improvements of 
neural networks include altering the ratios of training and 
testing datasets, the number of hidden nodes, and the training 
iterations. A nine learning schemes with different training-to-
validation data ratios was investigated and got the 
implementation results with the German datasets [10]. They 
concluded that the learning scheme with 400 cases for training 
and 600 for validation performed best with an overall accuracy 
rate of 83.6%. Emotional neural network [11] is a modified BP 
learning algorithm. It has additional emotional weights that are 
updated using two additional emotional parameters: anxiety 
and confidence. When comparing emotional neural networks 
with conventional networks for credit risk evaluation, 
experimental results showed that both models were effective, 
but the emotional models outperformed the conventional ones 
in decision making speed and accuracy [12].  

As reported in [3], RBF, LS-SVM and BP classifiers yield 
high performances on eight different credit scoring datasets. At 
the same time LDA and LOG also get good results, which 
indicate that the linear classifiers can also be available [4]. 
Several automatic scoring models also prove this result using 
the German, Australian and Japanese credit datasets [5]. In 
their experiments, C4.5 decision tree performed a little better 
than MLP on credit scoring but both of them are with high 
accuracies. On the contrary, Nearest Neighbor and Naïve 
Bayes classifiers appeared to be the worst in their tests. 

Optimization on the ratios of training and testing datasets, 
the number of hidden nodes, and the training iterations can 
have positive effect on refining the performance of MLP. 
Using the German datasets, an experiment is designed to test 
the performances of MLPs with various ratios of training-
validation instances [6]. In their tests, the learning scheme with 
400 cases for training and 600 for validation performed best 
regarding to the overall accuracy rate. The number of hidden 
nodes is also considered in their tests, as they conduct their 
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tests with MLPs that contains three different numbers of 
hidden nodes. However, their tests only consider some cases 
and could not lead to a general conclusion. Emotional neural 
network [7] has additional emotional weights that are updated 
using two additional emotional parameters: anxiety and 
confidence. It is a modified BP learning algorithm. The 
emotional models, as tested in experiments, outperformed the 
conventional ones in both speed and accuracy [8]. Artificial 
meta plasticity MLP is efficient when fewer patterns of a class 
are available or when information inherent to low probability 
events is crucial for a successful application. The accuracy of 
this model is 84.67% for the German dataset, and 92.75% for 
the Australian dataset [9].  

In [10], a two-stage hybrid modelling procedure with ANN 
and multivariate adaptive regression splines (MARS) is 
designed. After using MARS in building the credit scoring 
model, the obtained significant variables then served as the 
input nodes of ANN. However, ensemble system performed 
better only in one of the three datasets in the experiments of 
[11]. MLP is compared with multiple classifiers and classifier 
ensembles. Tests demonstrate that the ability of hybrid system 
is not better than usual methods.  

As to other methods, support vector machine (SVM) and 
genetic algorithm (GA) are also used for credit rating with 
good performance. SVM model can be refined by reduction of 
features using F score and took a sample instead of a whole 
dataset to create the credit scoring model [12]. Test results 
showed that this method was competitive in the view of 
accuracy as well as computational time. In [13], they selected 
important variables by GA to combine bank’s internal 
behavioral rating model and an external credit bureau model. 
This dual scoring model underwent more accurate risk 
judgment and segmentation to further discover the parts which 
were required to be enhanced in management or control from 
mortgage portfolio. Other than SVM and GA, Clustering-
Launched Classification (CLC) is also available and may 
perform better than SVM [14]. A multi-criteria quadratic 
programming (MCQP) model was proposed based on the idea 
of maximizing external distance between groups and 
minimizing internal distances within a certain group [15]. It 
could solve linear equations to find a global optimal solution 
and obtained the classifier and at the same time used kernel 
functions to solve nonlinear problems. Comparing with SVM it 
seemed more accurate and scalable to massive problems. 
Decision tree (DT) is another good alternative method.  

Recently, imbalanced datasets (where instances belonging 
to one class heavily outnumber instances in other classes) have 
attracted attention and some work has shown that appropriate 
ratios of different kinds of instances can augment classification 
accuracy. In [15], they used five real-world datasets to test the 
effect of good/bad credit instance ratio. Results showed that 
linear discriminant analysis (LDA) and logistic regression 
(LOG) performed acceptable rating accuracy with both slightly 
imbalanced datasets and highly imbalanced ones. To avoid the 
effect of imbalance data distribution, dynamic classifier and 
dynamic ensemble selection of features were added in the 
scoring model, which performed better than static classifiers 
[16]. 

Imbalance datasets can also bring bias to the evaluation of 
credit rating models. Traditionally, the performance of credit 
rating is evaluated by average accuracy. However, this value is 
highly susceptible by the imbalance number of instances, if one 
kind of instances is highly outnumbered the other. For example, 
if the credit rating model decided that every instance is “good”, 
and the ratio of good and bad instances is 9:1, then the 
accuracy of this “silly” credit rating model will be 90%. This is 
obviously unacceptable. In this paper, both accuracy and 
another evaluation model called Area Under Curve (AUC) will 
be used in experiments and the details of AUC will be 
introduced. 

In general, neural network with back propagation algorithm 
can score credit applications with high performance. However, 
there are still some problems for this model. Firstly, as the 
ratios of approved and rejected instances in the datasets are 
usually not balanced and sometimes highly imbalanced, the 
training process of a model may have to deal with more 
approved instances than rejected ones. This may cause bad 
performance when applying the learned model to the test 
datasets. Secondly, the numbers of instances used in test, 
validation and training sets are always limited. More data used 
in training means less used in validation and test, which may 
result in low accuracy. As all the three parts need as much 
instances as possible, the distribution of data is vital for the 
final test results. At last, the number of hidden units affects the 
accuracy and the time costs of a model. More hidden units may 
lead to high computing time but insufficient units cannot 
achieve high accuracy. The appropriate number can only be 
known by experiments with different models and choose the 
best according to the test results.  

In order to solve these problems, three aspects of the MLP 
will be discussed in this paper: (1) Optimise the ratio of 
approved/rejected cases in input instances. (2) Test the effect of 
different ratios of training-validation-testing data. (3) Improve 
the structure of MLP network. 

II. DATASET 

There are many open credit dataset available on the website 
of UCI Machine Learning Repository [5]. Among those 
datasets, the German dataset is a real world dataset with 21 
features including 20 attributes recording personal information 
and financial history of applicants. The last feature is labelled 
as approved (marked as 1) or rejected (marked as 2). This 
dataset contains 1000 instances, with 700 approved application 
instances and 300 rejected ones. These instances are presented 
randomly. Attribute details of this dataset are listed in Table 1. 
In this table, some attributes are numerical but others are 
qualitative and hard to be computed in training of neural 
networks. Thus, a numerical version of the dataset is used in 
this work. It transforms all qualitative variables to numeric and 
adds four more attributes.  

The German credit dataset is widely used as a benchmark 
and has many scoring models. In recent years different models 
have been utilized on this dataset to solve credit scoring 
problems. The accuracies of some representative models are 
listed in Table 2.  
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TABLE I.  ATTRIBUTES OF THE GERMEN CREDIT DATASET 

Number Description Class 

attribute 1 Status of existing checking account qualitative 

attribute 2 Duration in month  numerical 

attribute 3 Credit history qualitative 

attribute 4 Purpose  qualitative 

attribute 5 Credit amount  numerical 

attribute 6 Savings account/bonds qualitative 

attribute 7 Present employment since qualitative 

attribute 8 Instalment rate in percentage of 
disposable income 

numerical 

attribute 9 Personal status and sex qualitative 

attribute 10 Other debtors / guarantors qualitative 

attribute 11 Present residence since numerical 

attribute 12 Property  qualitative 

attribute 13 Age in years numerical 

attribute 14 Other instalment plans qualitative 

attribute 15 Housing qualitative 

attribute 16 Number of existing credits at this bank numerical 

attribute 17 Job qualitative 

attribute 18 Number of people being liable to 
provide maintenance for 

numerical 

attribute 19 Telephone  qualitative 

attribute 20 Foreign worker qualitative 

 

TABLE II.  ACCURACY OF SOME REPRESENTATIVE MODELS 

Article Scoring Models Accuracy (%) 

[9] MLP 84.67 

[16] Ensemble 82.03 

[17] LS-SVM 81.9 

[18] MLP 81.3 

[8] MLP 81.03 

[12] SVM 80.42 

[19] DT 78.52 

[20] Re-Rx 78.47 

[21] SVM 78.46 

[22] Case-based reasoning model 77.4 

[23] SVM 76.6 

[24] SVM 75.4 

[25] SVM 71.8 

Some of the accuracies as listed are average rates in a group 
of models and others are the best one. The “scoring models” in 
table 1 are basic models used in experiments and many of them 
have been improved. From this table we can see that the 
highest accuracy is 84.67±1.5% achieved by [18] using MLP 
model. This table only includes some results from journal 
papers published between 2011 and 2013. There were lots of 
experiments published in previous years but the accuracies 
were not better.  

III. METHEDOLOGY 

A. Average Random Choosing Method 

In this paper, we designed an average random choosing 
(ARC) method to select instances from datasets, which is used 
to improve training effects and model accuracy.  

The imbalance of data classes (where instances belonging 
to one class heavily outnumber instances in other classes) 
usually exist in credit datasets. Thus, in the training of neural 
networks there should be more instances of approved 
applications in order to get a better scoring model. From the 
point of test, as the original dataset is imbalanced, it is 

reasonable to keep the same ratio (approved/failed) in the test 
dataset.  

Another problem of data processing is the ratio of training-
validation-test sets. All three sets should have proper amount of 
instances. Usually, more instances for training can lead to 
better chance to get a better model. However, as the amount of 
data is limited, more data used for training means less for 
validation and test, which will cause unpredictable test 
performance.  

Usually when given a dataset containing both training and 
test data, the instances that used for training, validation and test 
are chosen randomly. For balanced dataset, this will cause 
imbalance distribution slightly and occasionally, which will 
hardly bring any problems. However, when the dataset is 
imbalanced, random choosing method will easily aggravate the 
imbalance problem. For example, if the training instance group 
is less imbalanced, which seems to be good for training, then 
the test group will be higher imbalanced and makes the 
evaluation of credit rating model biased.  

To solve these problems, we propose a method called ARC 
to pre-process data and generate average number of different 
instanced in each data group such as training and test. Suppose 
the total number of instances is n, and the ratio of good 
applications in the dataset is p. Then the numbers of good and 
bad applications are 

Good applications:     p ∗ n , 
Bad applicaions:        (1 − p) ∗ n 

Then suppose the ratio of data used in training is t and in 
validation is v. Then we have  

Training data: n ∗ t 
Validation data: n ∗ v 

Test data: n ∗ (1 − t − v) 

As we want the ratio of good to bad applications stays the 
same in training data (as in original data), the training, 
validation and test data can be divided into good cases and bad 
cases. The flow of processing data is listed in Figure 1. 

 

Original Credit 
Dataset 

Good Instances
n*p

Bad instances
n*(1-p)

Training dataset
n*t

Validation dataset
n*v

Test dataset
n*(1-t-v)

1-p

p

 

Fig. 1.  Flow of data processing and the amount of instances in each group  

From the original dataset, two different kinds of data, bad 
instances and good instances are divided into two groups. Then 
both of them are divided into training, validation and test 
datasets randomly. This step should be repeated for each new 
network training session, which can minimize the effect of 
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unordinary instances. This way, it is more likely to get a good 
data distribution which promotes a good scoring model. The 
algorithm can be described as follows: 

 

The function randperm(n) returns n different integer 
numbers. It is used to randomly select n different samples from 
an instance group. 

By this method, all groups (training, validation and test) 
have the same ratio of good to bad instances. Traditional 10-
fold validation method divides a dataset into 10 blocks of data 
randomly before training starts. It is not really random 
choosing and is not fit for imbalanced dataset. In some extreme 
cases, there could be one group with only one class of data. 
This is obviously unable to judge the performance of the 
model. Our average random method chooses instances 
randomly from both classes of data. It can choose data 
randomly which ensures more instance combinations can be 
used for training. Also the datasets of training, validation and 
test have the same ratio of instances.  

B. NN and MLP Scoring Mode 

A neural network is a massively parallel distributed 
processor made up of simple processing units, which has a 
natural propensity for storing experiential knowledge and 
making it available for use [26]. It was motivated by inspecting 
the human brain, which has high efficiency in computing and 

recognizing [27]. According to the structure of networks, it can 
be divided as single layer feed forward networks, multilayer 
feed forward networks and recurrent networks. Feed forward 
networks do not have any feedback loop, which are different 
from recurrent networks.  

ANNs are made of neurons, or called simple perceptron. 
The structure of neuron is shown in Fig 2. Each neuron is 
composed of two units. First unit adds products of weights 
coefficients and input signals. The second unit realizes 
nonlinear function, called neuron activation function. Signal e 
is adder output signal, and y = f(e) is output signal of nonlinear 
element. Signal y is also output signal of neuron. 

A typical feed forward network is multilayer perceptron 
(MLP). Other kinds of feed forward networks include single 
layer networks, radial basis function networks, support vector 
machine and others. Among them, MLP has better 
performance when applying on some models, especially for 
complex models and nonlinear classification problems [28]. 
This research use MLP neural networks to construct a credit 
rating model. 

A three layer MLP model will be developed in this 
research. The basic structure is demonstrated in Fig 3. The first 
layer is the input layer with 24 neurons since the dataset 
contains 24 input features (attributes). The last layer is the 
output layer with only one neuron, which stands for the score 
of an application. Only one hidden layer is used to reduce 
computing complexity.  

The number of hidden neurons can have great impact on 
the performance of the network. Here we build 34 different 
MLP models, with the number of hidden units varying from 6 
to 39. The model with highest classification accuracy will be 
chosen out. Our experiment results also prove that this scope is 
large enough since some of the models can achieve high 
accuracies. 

Neural networks cannot work without “learning”. The 
learning procedure is realized by learning algorithms, which 
calculate the weights of each neuron in the network. Based on 
the structure of NN, learning algorithms can be divided into 
supervised learning and unsupervised learning. In this paper, as 
the dataset has an outcome attribute, supervised learning will 
be used to obtain a MLP model for classification. The most 
popular learning algorithms for feed forward networks include 
back propagation (BP), radial basis function (RBF) and others 
[29].  

f(e) y

x1

x2

w1

w2

x1

x2

w1

w2

Summing 

junction

Non-linear

element

f(e)

e=x1w1+x2w2 y=f(e)

Fig. 2.  Structure of neuron 

Algorithm ARC 

Original Dataset D={xi, ti |i=0,1…n} 

1.  Select out all samples of class A A={xi, ti |ti=1} 

2.  Select out all samples of class B B={xi, ti |ti=2} 

3.  Select instances for test from class A 

TA={xi, ti | i =randperm(n*p*(1-t-v)), (xi, ti)∈A} 

4.  Select instances for test from class B  

TB={xi, ti | i =randperm(n*(1-p)*(1-t-v)), (xi, ti)∈B} 

5.  The test instances group T=TA∪TB 

6.  Samples in class A that are used to train and validate 

SA=A-TA 

7.  Samples in class B that are used to train and validate 

SB=B-TB 

8.  while(not reach the max epoch) 

9.  Choose out samples used for training in class A 

SAt={xi, ti |i=randperm(n*p*t), (xi, ti)∈SA} 

10.  Choose out samples used for training in class B 

SBt={xi, ti |i=randperm(n*(1-p)*t), (xi, ti)∈SB} 

11.  The training group is St= SAt+ SBt 

12.  The validation group is Sv=( SA- SAt)∪(SB- SBt) 

13.  Calculate output  

𝑦𝑖 = ∅(∑ 𝑤𝑠∅(∑ 𝑤𝑠𝑟
𝑛
𝑟=0 𝑥𝑟))ℎ

𝑠=0 , xr∈St 

14.  Update MLP by BP. Error signal is  

e(i)=ti-yi ti∈St 

15.  Validate MLP  

𝑦𝑖 = ∅(∑ 𝑤𝑠∅(∑ 𝑤𝑠𝑟
𝑛
𝑟=0 𝑥𝑟))ℎ

𝑠=0 , xr∈Sv 

16.  Performance of MLP v =
∑ 𝑒(𝑖)𝑛∗𝑣

𝑖=0

𝑛∗𝑣
 

17.  if(v>v0) stop training 

18.  else v0=v 

19. end while 
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In this paper, back propagation algorithm will be used in 
the training of MLP models. It is widely used in the training of 
MLP and proved to be effective for supervised training. The 
basic idea of BP is to update the weights of each connection by 
the difference of the outputs of the model and outputs in 
datasets. Initial weights will be given randomly in a range and 
the algorithm will stop if it meets the stopping criteria. It has 
been proved that the weights can converge in finite iterations. 
The algorithm of BP utilized on a MLP with one hidden layer 
can be described as follows: 

Initialize network weights (often small random values) 

Do 

for each training example ex 

prediction = neural-net-output(network, ex)  

// forward pass 

actual = teacher-output(ex) 

compute error (prediction - actual) at the output units 

compute ∆𝑤ℎfor all weights from hidden layer to  

output layer  // backward pass 

compute ∆𝑤𝑖  for all weights from input layer to  

hidden layer   // backward pass continued 

update network weights 

until all examples classified correctly or another stopping 

criterion satisfied 

return the network 

During the procedure of training, validation is used to 
control over-fitting. As the iteration goes on, the error rate of 
the network goes down until it reaches the lowest point. After 
that point, the error rate will not fall down any more and even 
rise. This is called over training or over fitting and the training 
procedure should be stopped when the error rate reaches the 
lowest point. Here we use some data to validate the network 
after each iteration. Validation data are not used to train the 
network, and they are more like the test data. After each 
iteration, we calculate the error rate with validation data and 
compare it with the result of the last iteration. If the new one is 
larger, then the iteration stops immediately. Else, the training 
and validation process goes on. In this way, we can avoid over 
fitting.  

.

.

.

.

.

.

Input layer Hidden layer output layer

 

Fig. 3. Structure of a 3 layer MLP model. 

C. Area Under Curve  

Traditionally, classification accuracy is used to judge the 
“goodness” of feature group. Recently the Area Under Curve 
(AUC) have been proved to be a good alternative [30]. It was 
initially used as an evaluation function in Feature Selection to 
rank features in [31] and [32]. It was later extended to multi-
class in [33] and test results showed that AUC has better 
performance than traditional overall accuracy (OA).  

Define an experiment from P positive instances and N 
negative instances for some condition. The four outcomes can 
be formulated in a 2*2 contingency table or confusion matrix, 
as in table 3 [34]. 

 

TABLE III.  FOUR OUTCOMES OF AN EXPERIMENT 

  
Condition 

 
  

Positive Negative 

 

Test 

outcome 

Positive True positive 
False positive 

(Type 1 error) 

 

Precision= 

Negative 
False negative 

(Type 2 error) 
True negative 

Negative predictive value= 

  

Sensitivity= 

 

Specificity= 

 

Accuracy 

 

  

∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

∑ 𝑇𝑢𝑟𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

∑ 𝑇𝑢𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑣𝑒

∑ 𝑇𝑒𝑠𝑡 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

∑ 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝑇𝑒𝑠𝑡 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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A receiver operating characteristic (ROC) space is defined 
by false positive rate (FPR) and true positive rate (TPR) as x 
and y axes respectively, as shown in Fig 4. Write the 
probability for belonging in the class as a function of a 
decision/threshold parameter T as P1(T) and the probability of 
not belonging to the class as P0(T). The false positive rate FPR 

is given by FPR(T) = ∫ 𝑃0(𝑇) 𝑑𝑇
∞

𝑇
 and the true positive rate is 

TPR(T) = ∫ 𝑃1(𝑇) 𝑑𝑇
∞

𝑇
. The ROC curve plots parametrically 

TPR(T) versus FPR(T) with T as the varying parameter. The 
area under the curve (AUC) of ROC is equal to the probability 
that a classifier will rank a randomly chosen positive instance 
higher than a randomly chosen negative one (assuming 
'positive' ranks higher than 'negative') [30]. 

IV. EXPERIMENTS AND RESULTS 

Experiments are designed to test the effective of our new 
instance selection method and find out a better MLP model. 
There are three aspects of the experiments. The first aspect is to 
find out the best amount of data used in training, validation and 
test, respectively. Then based on the results, the second aspect 
is to focus on our new instance choosing method. Thirdly, we 
discuss about the number of hidden neurons by training each 
model 20 times with different initial weights for each kind of 
model in all experiments. All instances for training, validation 
and test are randomly chosen. The best and average error rates 
are listed and discussed. 

A. Ratio of Training-Validation-Test 

In the experiments, we use 3 different ratios of data, 
800:100:100, 900:50:50 and 600:200:200 to find out the most 
suitable one. To be more accurate, all groups of data are chosen 
randomly from the German dataset. The number of hidden 
neurons varies from 6 to 39, which ensures that every group 
can get their best model. Also each kind of model is trained 20 
times. We record the lowest error rate and average rate of each 
kind of model. Test results are listed in Table 5. 

The result shows that a ratio of 800:100:100 performs 
better in nearly all aspects in regards to accuracy rate. The 
lowest error rate, 0.17, is achieved with 15 hidden units which 
is also the best model of all. The average of error rate can 
indicate an overall performance of some model groups. The 
model with 10 hidden units seems more stable, with an average 
error rate of 0.2295 which is lower than the others. For all 
models, the average lowest error rate is around 0.208, 
indicating that it is more likely to get a very low error rate with 
this training-validation-test ratio.  

The ratio of 600:200:200 gives more data to testing, which 
leads to insufficient data for training. Thus it gets high error 

rates in regards to both the lowest value and the average value. 
Although the ratio 900:50:50 has more instances for training 
and the lowest error rate is very close to the best one, the 
shortness of testing data leads to a high average value, which 
means there is a low possibility to get a good model.  

B. Average Random Choosing method 

In this section, we compare models trained by data from 
our Average Random Choosing (ARC) method. Nothing has 
changed except that we control the percentage of 
approved/rejected instances in each dataset. The overall 
percentage is 70% for approved instances and 30% for rejected 
instances. So this ratio stays the same in training, validation 
and test data groups. The ratio of training-validation-test is 
800:200:200, which performs best in our previous tests. The 
results are listed on Table 4. 

Comparing with the traditional instances divide methods, 
which randomly divide different kinds of instances in test, 
validation and training, our new method obviously outperforms 
the others. As to the AUC, the ARC method performs much 
better than the other methods, especially the 900:50:50 group, 
because class imbalance problem is very serious in that group.  

 

Fig. 4. Area Under Curve (AUC) 

 

TABLE IV.  AUCS AND ACCURACIES OF ARC METHOD COMPARING WITH OTHER METHODS

Divide rate 800:100:100 900:50:50 600:200:200 ARC  method 

Evaluation method AUC 
Average 
Accuracy AUC 

Average 
Accuracy AUC 

Average 
Accuracy AUC 

Average 
Accuracy 

9 hidden neurons 0.71 0.762 0.58 0.769 0.69 0.724 0.76 0.80 

Best of all 0.73 0.771 0.62 0.769 0.71 0.738 0.76 0.80 
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As we can see in Table 4, the accuracy may be higher than 
AUC value. That is because AUC is more objective than 
accuracy when the dataset is imbalanced. For example, if the 
MLP classifier output 1 in all case, no matter what the input is. 
Then the accuracy will be 70% since this class occupies 70% 
instances in the test dataset. In extreme cases, if there are 90% 
of instances in one class and 10% in the other, this “dull” 
classifier will have 90% classification accuracy, while the 
AUC is only 50%. Thus, if the dataset is imbalanced, AUC 
should be used as the evaluation method of classifiers. 

Test results show that better organized data can enhance 
model performance especially when the dataset is imbalanced 
between its classes. As the German dataset is a real world 
application, our Average Random Choosing method can be 
easily generalized to handling other datasets. Also, the test 
results proved that AUC is a more objective evaluation method 
when the training data set has class imbalance problem. The 
average accuracy may be biased and cannot reflect the real 
performance of MLP models. 

C. Number Of Hidden Neurons 

In Table 5 we also list the result of validation for each kind 
of model, including the lowest and average rates among the 20 
different models. As to the error rates in tests, the lowest ones 
seem to have been achieved when the number of hidden neuron 
is 9, or 10, or 12, respectively. However, with these numbers, 
many other models also get competitive results. When the 
number of hidden units is 6, 14, 16, 19, 24, 26, 35, 36 and 39, 
the lowest rate is 0.14 which is only a little higher than 0.13 so 
it can still be regarded as good models. As to the average rate, 
the model with 9 hidden neurons gets the lowest one which is 
0.2085. But the average of all models is only 0.223, which 
means that there is little difference between models when only 
accuracy is considered. So there is no ubiquitous principle for 
the relationship between the number of hidden neurons and the 
accuracy of a model.  

However, computation time is also very important to neural 
network research. More hidden neurons can lead to more 
computation time. Thus, if some models produce the same 
accuracy, the one with less hidden neurons is preferred. In our 
experiments, the network with 9 hidden neurons wins out in 
most cases (Shown in Table 5). So this model is chosen as the 
most suitable for the German credit dataset in our experiments. 

D. Summary 

In the first round of experiments, the 800: 100: 100 
combinations get the highest accuracy so this ratio is most 
suitable for building an acceptable model. After that, we use 
our Average Random Choosing method to optimize the dataset. 
The ratio of approved/rejected instances in German dataset, 
7:3, is precisely implemented in the datasets for training, 
validation and testing. Results show that our new method can 
remarkably enhance the accuracy and AUC value, compared 
with the traditional methods. Finally, models with 9 hidden 
units perform best among all models, in consideration of high 
accuracy and low computational time. Also we find an 
interesting relationship between number of hidden neurons and 
validation accuracy: the more hidden units a model has, the 
higher accuracy it may get when validated.  

Compared with the results in other relevant articles with the 
same benchmark dataset, our model achieves a high accuracy 
of 87%, which is almost higher by 5% than the best result 
reported in the relevant literature so far. Our best model 
contains 9 hidden neurons, using our Average Random 
Choosing method. The ratio of training-validation-test data is 
800:100:100. If we take validation results into consideration, 
the highest accuracy reaches 92%, which is almost 10% higher 
than the best result from existing models. 

It is more interesting when checking the validation error 
rates. As validation data is also a kind of test data (but with a 
different purpose), the error rate of validation is proper to 
reflect the prediction ability. It is always higher than accuracy 
of test data because a training process will not stop until a 
validation gets high accuracy. In our experiments, the accuracy 
of validation can reach almost 0.92 with 38 hidden units in the 
model. It is 0.05 higher than the best result with test data. 
Although this value is not as objective as the accuracy from 
pure test data, it indicates that MLP model has the ability of 
rating credit application more precisely. Also, there is an 
interesting tendency found in the validation dataset. As the 
number of hidden units gets larger, this error rates seems to be 
lower. It is shown in Fig. 5. 

V. CONCLUSIONS 

In this paper, we designed a new instance selection method 
called Average Random Choosing method. It is used to solve 
highly imbalanced dataset problems. Experiments demonstrate 
that this method can improve MLP model accuracy in some 
extent. It could also be used in other dataset and real world 
problems. 

We also designed a MLP model for credit rating with high 
accuracy compared with other works that utilized the same 
dataset. Our experiment test 36 models with different number 
of hidden nodes, and 3 kinds of training with distinctive ratio 
of training-validation-test instances. 

From the results of our experiments, the accuracy of 
classification has a trend of declining with raising number of 
hidden nodes. The most valuable contribution of this paper is 
presenting a MLP model with high credit rating accuracy.  

 
 

Fig. 5. Tendency of model’s error rates when numbers of hidden units 
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TABLE V.  TEST RESULTS OF GERMEN CREDIT DATASET 

 

800:100:100 900:50:50 600:200:200 Average Random Choosing method 

Number of 

hidden 
neurons 

Lowest 

error 
rate 

Average 
error rate 

Lowest 
error rate 

Average 
error rate 

Lowest 
error rate 

Average 
error rate 

Lowest test 
error rate 

Average 
error rate 

lowest 

validate 
error rate 

average  

validate 
error rate 

6 0.21 0.2415 0.21 0.2925 0.245 0.273 0.14 0.2145 0.1265 0.1502 

7 0.21 0.251 0.2 0.251 0.225 0.273 0.15 0.211 0.1228 0.1441 

8 0.19 0.239 0.21 0.2765 0.22 0.2615 0.17 0.2215 0.1231 0.1438 

9 0.18 0.2385 0.18 0.2315 0.245 0.27675 0.13 0.2085 0.1284 0.1472 

10 0.18 0.2295 0.2 0.243 0.24 0.27075 0.13 0.221 0.1270 0.1471 

11 0.2 0.242 0.18 0.2635 0.225 0.26275 0.16 0.223 0.1234 0.1439 

12 0.21 0.246 0.19 0.2675 0.23 0.26575 0.13 0.225 0.1297 0.1491 

13 0.2 0.256 0.21 0.2705 0.2 0.26625 0.16 0.2225 0.1163 0.1431 

14 0.21 0.258 0.19 0.258 0.205 0.26525 0.14 0.2105 0.1113 0.1407 

15 0.17 0.2595 0.21 0.26 0.24 0.2715 0.16 0.219 0.1103 0.1422 

16 0.22 0.246 0.23 0.26 0.23 0.266 0.14 0.2085 0.1245 0.1399 

17 0.19 0.248 0.21 0.245 0.235 0.2745 0.19 0.2415 0.1196 0.1433 

18 0.21 0.2595 0.21 0.293 0.21 0.26725 0.17 0.221 0.1022 0.1342 

19 0.2 0.255 0.24 0.277 0.235 0.28 0.14 0.2135 0.1124 0.1407 

20 0.21 0.2585 0.21 0.262 0.22 0.2655 0.16 0.2215 0.1006 0.1402 

21 0.22 0.256 0.21 0.2835 0.24 0.2665 0.16 0.215 0.1207 0.1368 

22 0.2 0.2545 0.22 0.2985 0.23 0.26475 0.15 0.2195 0.1217 0.1351 

23 0.19 0.259 0.21 0.2675 0.24 0.27075 0.18 0.2265 0.1143 0.1353 

24 0.19 0.26 0.2 0.26 0.245 0.27375 0.14 0.215 0.1249 0.1377 

25 0.22 0.257 0.21 0.2845 0.24 0.27175 0.15 0.223 0.1007 0.1394 

26 0.22 0.2725 0.19 0.276 0.235 0.28575 0.14 0.224 0.0884 0.1310 

27 0.2 0.261 0.22 0.287 0.24 0.2735 0.17 0.2175 0.1227 0.1380 

28 0.21 0.2625 0.23 0.2755 0.235 0.2755 0.15 0.2235 0.1123 0.1345 

29 0.21 0.262 0.19 0.266 0.225 0.273 0.15 0.2265 0.1100 0.1339 

30 0.23 0.2765 0.23 0.278 0.21 0.2665 0.15 0.2275 0.0916 0.1304 

31 0.24 0.2715 0.23 0.2775 0.25 0.28575 0.18 0.228 0.0892 0.1283 

32 0.22 0.265 0.2 0.2775 0.245 0.272 0.18 0.234 0.1013 0.1295 

33 0.23 0.2755 0.22 0.273 0.245 0.27725 0.17 0.2345 0.1070 0.1287 

34 0.22 0.272 0.22 0.281 0.24 0.28575 0.17 0.228 0.1023 0.1285 

35 0.22 0.2675 0.22 0.2885 0.235 0.28225 0.14 0.229 0.0932 0.1243 

36 0.24 0.2835 0.19 0.285 0.245 0.2895 0.14 0.2275 0.1055 0.1311 

37 0.22 0.278 0.23 0.3175 0.225 0.29125 0.16 0.2265 0.0963 0.1258 

38 0.17 0.28 0.22 0.301 0.21 0.27825 0.19 0.2385 0.0801 0.1324 

39 0.24 0.294 0.2 0.284 0.235 0.284 0.14 0.2375 0.0854 0.1215 

Best 0.17 0.2295 0.18 0.2315 0.2 0.2615 0.13 0.2085 0.0801 0.1215 
Average 0.2082 0.25988 0.20941 0.27389 0.23161 0.27375 0.1553 0.2231 0.1102 0.1368 

Further works may focus on feature selection for neural 
networks, as attributes in dataset are not always relevant to 
classification feature. The elimination of redundant features 
is an important task in data mining. Also it should be noticed 
that the performance of credit rating model is always 
evaluated by accuracies. Other statistic methods, such as F-
score, standard deviation (SD) and others should be used to 
help choose out better credit rating models. 
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