ON H"-CLOSED SETS IN TOPOLOGICAL SPACES

¹A. JOSE LITTLE FLOWER AND ²M. RAJA KALAIVANAN

¹Research Scholar, Department of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India -625 021. e-mail : joselittlef@gmail.com. ²Department of Mathematics, Pasumpon Muthuramalinga Thevar College, Usilampatti - 625 532, Madurai District, Tamil Nadu, India. e-mail : rajakalaivanan@yahoo.com

Abstract: In this article, we introduce a new class of closed sets in topological spaces namely, H"-closed and we prove every subset of the digital line is H"-closed.

Keywords: H''-closed sts, H''-open sets Λ -sets and Λ_r -sets.

1 INTRODUCTION

J. Jeyanthi et.al the introduced Λ_r -closed, Λ_r continuous and Caldas et.al the introduced λ closed and λ -continuous. Levin introduced generalized closed sets developed by more generalized sets.

In this paper, we introduce a new class of closed sets in topological spaces namely, H"-closed and we prove every subset of the digital line is H"-closed.

Through out paper obtained in the Topological space (X,τ) (resp. (X,σ) and (X,η)) is denoted by TS X (resp. TS Y and TS Z).

For a subset C of a TS X, int(C), cl(C) denoted the interior, closure of C respectively. And λ symbol use this thesis A.

For so many author introduced various definitions

Definition 1.1. [5] The collection of all λ closed(resp. λ -open) subsets of X will be denoted by $\lambda C(X)$ (resp. $\lambda O(X)$). We set

 $\lambda C(X,x) = \{U : x \in O \in \lambda C(X,\tau)\} \ \lambda O(X,x) = \{U : x \in O \in \lambda O(X,\tau)\}$

Definition 1.2. [8] Let B be a subset of a TS X. We define subsets B^{Λ} and B^{V} as follows:

 $B^{\Lambda} = \cap \{U/U \supseteq B, U \in \tau\}, and$

$$B^V = \bigcup \{F/F \subseteq B, X - F \in$$

 τ } A subset B of (X,τ) is a Λ-set (resp. V-set) if $B = B^{\Lambda}$ (resp. $B = B^{V}$).

Definition 1.3. A subset C of a TS X is called a

(1) g-closed set [7] if $Cl(C) \subseteq U$ whenever $C \subseteq U$ and U is open.

The complement of g-closed set is g-open set.

(2) a Λ_g -closed set [4] (resp. Λ -g-closed [5], $g\Lambda$ closed) if $Cl(C) \subseteq U$ (resp. $Cl_{\lambda}(C) \subseteq U$, $Cl_{\lambda}(C) \subseteq U$) whenever $C \subseteq U$ and U is λ -open (resp. U is λ open, U is open).

Lemma 1.4. [2] Let C be a subset of a TS X. Then we have the next:

- (1) If $C \subset X$ then $C \subset \lambda$ ker(C).
- (2) If $C, B \subset X$ then $C \subset B$ implies $\lambda Ker(C) \subset \lambda Ker(B)$.
- (3) λKer(λKer(C)) = λKer(C).
 Proposition 1.5. [8]
- (1) The subsets φ and X are Λ -sets.
- (2) Every union of Λ -sets is a Λ -set.
- (3) Every intersection of Λ -sets is a Λ -set.
- (4) A subset B is a Λ -set if and only if the complement of B is a V-set.

Lemma 1.6. [9] Every Λ_r -set is Λ -set.

H"-sets and K"-sets

This section contains a new class of sets, called H["]-sets in TS and investigate certain basic properties of H["]-sets.

Definition 2.1. Let *S* be a subset of a *TS X*, then we define a $SS^{"} = \cap \{Q/Q \supset S, Q \in AO(X, \tau)\}$.

Lemma 2.2. [5] Let C, B and $C_i (i \in I)$ be a subset of a TS X. The following properties hold:

- (1) $C \subset Acl(C) \subset cl(C)$.
- (2) $C \subset B \Longrightarrow Acl(C) \subset Acl(B).$
- (3) C is A-closed $\Leftrightarrow C = Acl(C)$.
- (4) Acl(Acl(C)) = Acl(C). (5) If C_i is A-closed for each $i \in I$ then $\cap C_i$ is A-closed.

(6) If C_i is A-open for each $i \in I$ then $\cup C_i$ is A-open.

Lemma 2.3. For the subsets C, B and $C_i(i \in I)$ of a TS X the following hold.

(1) If $C \in AO(X,\tau)$ then $C = CS^{"}$.

- (2) $(\cup C_i)S'' = \cup C_iS''.$ $i \in I \quad " \quad i \in I \quad "$ (3) $(\cap C_i)S \subset \cap C_iS. i \in I \quad i \in I$
- *troof.* (1) By Definition 2.1 and since $C \in AO(X,\tau)$, we have $CS^{r} \subseteq C$. By Lemma 1.4(1), we have that $C = CS^{r}$.
 - (2) Assume that there exists a point $x \in X$ such that $x \neq \cup C_i^S$. Then by $i \in I$ Definition 2.1, there exists subsets $W_i \in AO(X,\tau)$, for all $i \in I$, such that

for all $i \in I$, such that $x \neq W_i$, $C_i \subset W_i$. Let $W = \bigcup_{i \in I} P_i$. Then we have that $x \notin \bigcup_{i \in I} W_i$, $\bigcup_{i \in I} C_i \subseteq W$ and $W \in AO(X,\tau)$. This implies that $x \notin (\bigcup_{i \in I} C_i)^{\tilde{S}}$. Thus ($\bigcup_{i \in I} C_i)^{\tilde{S}} \subset \bigcup_{i \in I} C_i^{\tilde{S}}$.

Conversely, Assume that there exists a point *x*

such that $x \notin (\bigcup_{i \in I} C_i)^{\mathcal{S}}$.

Then there exists a subset $W \in AO(X,\tau)$ such that $\cup C_i \subset W$ and $x \neq W$.

Thus, for each $i \in I$ we have $x \neq C_i^{\tilde{S}}$. This implies that $x \notin \bigcup_{i \in I} (C_i^{\tilde{S}})$. Thus, $\bigcup_{i \in I} C_i^{\tilde{S}} \subset (\bigcup_{i \in I} C_i)^{\tilde{S}}$.

(3) Suppose that there exist a point *x* such that $x/\in \cap C_iS^r$. Then there exists

 $\in I \cap i_0 \in I$ such that $x \neq (C_{i_0})$ Sand there exists Aopen set P such that $x \neq P$ and $C_{i_0} \subset P$. We have $\cap C_i \subset C_{i_0} \subset P$ and $x \neq P$. Therefore, $x \neq (\cap C_i)$ S^{\cdot}. $i \in I$ $i \in I$

This shows that $(\bigcap_{i \in I} C_i)^{\tilde{S}} \subset \bigcap_{i \in I} C_i^{\tilde{S}}$. **Remark 2.4.** The converse of above Theorem 2.3 (1) is not true and the equality of

(3) is not always true in general.

Example 2.5. Let $X = \{1, 2, 3, 4\}$ with $\tau = \{X, \varphi, \{1, 3\}, \{1, 3, 4\}\}$.

By Definition 2.1, $({4})S = {4}$, the set ${4}$ is not A-open.

Definition 2.6. A subset C of a TS X is called S''-set if C = CS''.

The family of all H"-sets of TS X is denoted by $\tau S'(X)$ (or simply $\tau S'')$.

Proposition 2.7. *In a TS X, every* Λ *-set is* S["]*-set. Proof.* Follows from the fact that every open set is A-open.

Example 2.8. Let $X = \{1,2,3\}$ and $\tau = \{\varphi, X, \{1\}, \{1, b\}\}$. Hence, $\{2\}$ is a S["]-set but not a Λ -set.

Definition 2.9. Let Q be a subset of a TS X then we define the following:

 $QK^{\tilde{}} = \cap \{P/P \subset Q, P \in AC(X, \tau)\}.$

Definition 2.10. A subset C of a TS X is called K''-set if C = CK''.

The family of all $K^{"}$ -sets of TS X is denoted by $\tau K^{"}(X)$ (or simply $\tau K^{"}$).

Lemma 2.11. For subsets C and $C_i(i \in I)$ of a TS X, the following hold.

- (1) The subsets φ and X are S["]-sets.
- (2) If C is A-open then C is a S''-set.
- (3) If C_i is a S["]-set for each $i \in I$ then $i \in I$ is a S["]-set. (4) If C_i is a S["]-set for each $i \in I$ then $i \in I$ is a S["]-set.

Proof. (1) Follows from Proposition 1.5(1) and Proposition 2.7.

- (2) Follows from Lemma 2.3(1) and Definition 2.6.
- (3) Let $C_i \in \tau S^{\tilde{s}}$ for some $i \in I$, then we have, $\bigcup_{i \in I} C_i = \bigcup_{i \notin I} C_i^{\tilde{s}}$ by Definition 2.6 $\cup C_i = \bigcup_{i \in I} C_i S^{\tilde{s}} = (\bigcup_{i \in I} C_i) S^{\tilde{s}} \cup C_i$ by $i \in I i \in I i \in I i \in I : i \in I : i \in I : i \in I$ Lemma 1.4(1). Thus, we have $\bigcup_{i \in I} C_i S^{\tilde{s}} = (\bigcup_{i \in I} C_i) S^{\tilde{s}}$. Therefore $\bigcup_{i \in I} C_i \in \tau S$.

i∈I i∈I i∈I

(4) Let $C_i \in \tau S$ for each $i \in I$, then by Definition 2.6, Lemma 2.3 and 1.4(1) we have, $\bigcap_{i \in I} C_i = \bigcap_{i \in I} C_i^{\tilde{S}} \supset (\bigcap_{i \in I} C_i)^{\tilde{S}} \supset \bigcap_{i \in I} C_i$. Thus, we have $\bigcap_{i \in I} C_i = (\bigcap_{i \in I} C_i)^{\tilde{S}}$ and $\bigcap_{i \in I} C_i \in \tau^{\tilde{S}}$.

Theorem 2.12. In a TS X, if $AO(X,\tau) = AC(X,\tau)$ then for any subset $C \subset X$, $Acl(C) = CS^{\sim}$.

Proof. Let $C \subset X$ and $C \in AO(X,\tau)$. By Lemma 2.3(1) we have, $CS^{\tilde{}} = C$. By assumption, $C \in AC(X,\tau)$. Then, by Lemma 2.2(3) Acl(C) = C. Therefore $Acl(C) = CS^{\tilde{}}$.

Remark 2.13. *The converse of Theorem 2.12 is not true in general.*

Example 2.14. Let $X = \{1,2,3,4,5\}$ and $\tau = \{\varphi, X, \{3, 4\}, \{1, 3, 4\}\}$. Let $C = \{1\}$. Then $Acl(C) = \{1\}$ and $AS^{\sim} = \{1\}$ but $AO(X, \tau) = AC(X, \tau)$.

H"-closed sets

We introduce a new class of sets, called H"closed sets in space and study their properties.

Definition 3.1. A subset C of a TS X is called H''closed if $C = P \cap Q$ where P is a H''-set and Q is a A-closed set.

The complement of H''-closed set is called H''-open set.

Lemma 3.2. Let a TS X. Then the following properties are valid:

- (1) φ and X are A-closed and A-open in X.
- (2) A-closed set in X is H''-closed in X.
- (3) φ and X are H"-closed and H"-open in X.
- *Proof.* (1) Since φ can be written as $\varphi \cap X$, X is closed in TS X and by Proposition 1.5(1), φ is a Λ -set we have φ is a A-closed set in TS X. Since $X = X \cap X$, X is closed in TS X and by the Proposition 1.5, X is a Λ -set, X is A-closed in X. The complement of φ and X is X and φ respectively. Hence φ and X are A-open in X.
- (2) Let A be a A-closed set in X. X is A-open. By Lemma 2.11 (2), X is a S^T-set in X. Hence $C = C \cap X$ is a H^T-closed set in X.
- (3) By (1) and (2), we get φ and X are H["]-closed. The complement of φ and X is X and φ respectively. Hence φ and X are H["]-open in X.
 Remark 3.3. In general the converse of (2) of Lemma 3.2 is not true which is seen in the next Example.

Example 3.4. Let a TS X such that $X = \{1,2,3,4\}$ and $\tau = \{\varphi, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}, X\}$. Hence $\{1,2,4\}$ is H["]-closed but not A-closed.

Theorem 3.5. In a TS X, every Λ_r -closed is H["]-closed.

Proof. Suppose $C = P \cap Q$ is Λ_r -closed, where P is a Λ_r -set and Q is closed. By Lemma 1.6, P is a Λ -set. Thus C is A-closed and hence C is H["]-closed. **Example 3.6.** Let $X = \{1, 2, 3, 4\}, \tau = \{\varphi, X, \{1, b\}, \{1, 2, 3\}\}$. Hence $\{3\}$ is not

a Λ_r -closed set but it is a H"-closed set.

Theorem 3.7. In a TS X, every (Λ, θ) -closed is (Λ, δ) -closed.

Proof. Follows from the fact that every θ -closed is δ -closed and θ -open is δ -open.

Example 3.8. Let $X = \{1, 2, 3, 4\}, \tau = \{\varphi, X, \{1\}, \{2\}, \{1, 2\}\}$. Hence $\{1\}$ is a

 (Λ, δ) -closed set but not a (Λ, θ) -closed set.

Lemma 3.9. In a TS X, every Λ_{θ} -set is Λ -set.

Proof. Follows from the fact that every θ -open is open.

Example 3.10. Let $X = \{1,2,3\}, \tau = \{\varphi, X, \{1\}, \{1, 2\}\}$. Hence $\{1\}$ is a Λ -set but not a Λ_{θ} -set.

Theorem 3.11. In a TS X, every (Λ, θ) -closed is H["]-closed.

Proof. Suppose $C = P \cap Q$ is Λ_{θ} -closed, where P is a Λ_{θ} -set and Q is θ -closed. By Lemma 3.9, L is a Λ -set. Since every θ -closed set is a closed set, Q is closed. Thus C is A-closed and hence C is H["]-closed.

Example 3.12. Let $X = \{1, 2, 3, 4\}, \tau = \{\varphi, X, \{1\}, \{2\}, \{1, 2\}\}$. Hence $\{1\}$ is

H"-closed but not (Λ, θ) -closed.

Remark 3.13.*The concepts of closed sets and* (Λ, δ) *-closed sets are independent.* **Example 3.14**.

(1) Let $X = \{1,2,3\}, \tau = \{\varphi, X, \{1\}, \{1,2\}\}$. Hence $\{3\}$ is closed but not (Λ, δ) -closed.

(2) Let $X = \{1,2,3\}, \tau = \{\varphi, X, \{1\}, \{2\}, \{1, 2\}\}$. Here {3} is (Λ, δ) -closed but not closed.

Lemma 3.15. In a TS X, every Λ_{δ} -set is Λ -set.

Proof. Follows from the fact every δ -open is open.

Example 3.16. Let $X = \{1,2,3\}, \tau = \{\varphi, X, \{1\}\}$. Hence $\{1\}$ is a Λ -set but not a

 Λ_{δ} -set.

Theorem 3.17. In a TS X, every (Λ, δ) -closed is H["]-closed.

Proof. Suppose $C = P \cap Q$ is Λ_{δ} -closed, where P is a Λ_{δ} -set and Q is δ -closed. By Lemma 3.15, P is a Λ -set. Since every δ -closed set is a closed set, Q is closed. Thus C is A-closed and hence C is H["]-closed.

Example 3.18. Let $X = \{1,2,3\}, \tau = \{\varphi, X, \{1\}, \{1, 2\}\}$. Hence $\{1\}$ is H["]-closed

but not (Λ, δ) -closed.

Theorem 3.19. For a subset C of a TS X, the following properties are equivalent.

- (1) *C* is H["]-closed.
- (2) $C = P \cap Acl(C)$, where P is a H["]-set.
- (3) $C = CS^{r} \cap Acl(C)$.

Proof. (1) ⇒ (2) : Let C be H″-closed, then there exists a H″-set P and a A-closed such that C = P∩ *Q*.Since C ⊂ Q, We have C ⊂ Acl(C) ⊂ Acl(Q) = Q and C = P ∩ Q ⊃ P ∩ Acl(C) ⊃ C. Therefore we obtain C = P ∩ Acl(C).

(2) \Rightarrow (3) : Let $C = P \cap Acl(C)$, where P is a H"-set. Since $C \subset P$, we have $CS \subset PS = P$ and hence $C \subset CS \cap Acl(C) \subset P \cap Acl(C) = C$. Therefore, we obtain $C = CS \cap Acl(C)$.

(3) \Rightarrow (1) : By Lemma 1.4, *CS*[°] is a S[″]-set and by Lemma 2.2(4), *Acl*(*C*) is A-closed. By (3), *C* = *CS*[°] \cap *Acl*(*C*) and hence C is H[″]-closed.

Theorem 3.20. If a set C is Λ -g-closed then Acl(C)/C contains no non empty

A-closed.

Proof. Let G be a A-closed subset of Acl(A) - C. Now, we have $C \subseteq X - G$. Since C is Λ -*g*-closed, we have $Acl(C) \subseteq X - G$ (or) $G \subseteq X - (Acl(C))$. Thus $G \subseteq Acl(C) \cap (X - (Acl(C))) = \varphi$ and G is φ .

Remark 3.21. The converse of Theorem 3.20 is not true as it can be seen by the next Example.

Example 3.22. Let $X = \{1,2,3,4\}, \tau = \{\varphi, X, \{1\}, \{1, b\}\}$. If $C = \{1,3\}$ then $Acl(C)-C = \{2,4\}$ does not contain nonempty A-closed set. But C is not Λ -g-closed.

References

- 1. F. G. Arenas, Julian Dontchev and Maximilian Ganster, On λ -sets and the dual of generalized continuity, Questions Answers Gen. Topology 15 (1997), 3-13.
- 2. M. Caldas, D. N. Georiou and S. Jafari, Characterization of low separation axioms via λ -open sets and λ -closure operator, Rendiconti del Circ. Mat. Di Palermo, 54(2005), 195-208.
- M. Caldas, D. N. Georgiou, S. Jafari and T. Noiri, On (Λ,θ)-closed sets, Q and A in General Topology, 23(2005).
- M. Caldas, S. Jafari and T. Noiri, On Λ-Generalized closed sets in topological spaces, Acta. Hungar., 118(4)(2008), 337-343.