
IT in Industry, vol. 5, no. 2, 2017 Published online 16-Mar-2017

Copyright ISSN (Print): 2204-0595

© Wallis, Henskens, Hannaford, and Paul 2017 16 ISSN (Online): 2203-1731

Implementation and Evaluation of a

Component-Based framework for

Internet Applications

Mark Wallis, Frans Henskens, Michael Hannaford

School of Electrical Engineering and Computer Science

University of Newcastle

Newcastle, Australia

mark.wallis@newcastle.edu.au

David Paul

School of Science and Technology

University of New England

Armidale, Australia

Abstract—In previous publications we have introduced the

concept of using a component-based software engineering

paradigm to build Internet-enabled applications. We have

proposed that this design allows for greater flexibility in

deployment, better utilisation of resources and a reduction in

total application development effort. We have described a system

and realised that system as an API that can be used to design,

build and execute such components. In this report we provide

an overview of the key system components and present an

implementation of an application developed using the system. We

use this application to perform experimental and functional

comparisons to show that the system provides advancements over

the status quo.

Keywords—cloud computing; component-based software

engineering; platform-as-a-service

I. INTRODUCTION

Component-based software engineering [1] is a software
design paradigm focusing on loosely coupled, functionally
distinct executing components that are orchestrated together to
form a working system. Traditionally, these components all
executed on a single host. The move into distributed
component-based software engineering saw a paradigm shift
that allow components executing on multiple hosts to function
together, over a network, to form a working application. The
network connecting the components was generally an Intranet,
or a limited Internet, joining a small number of finite
components. Cloud Computing [2] saw further evolution of
distributed computing by providing a remote platform for the
execution of software, including software components. When a
component execution environment is deployed on Cloud
resources it is generally viewed as a platform-as-a- service
(PAAS) model.

If a software engineer wishes to build an application with
multiple components executing in multiple cloud
environments, with the current distributed component-based
and Cloud Computing platforms, then the approaches are
cumbersome. The developer is required to identify the end
points of the inter-platform connectivity and write code
specific to each Cloud environment that performs the

integration task. For example, the developer may choose to
implement a web service [3] “server” component in one Cloud,
and a web service “client” component in another Cloud in
order to build a connection between the two components. This
approach does not scale well when you have a many-to- many
relationship between components in multiple distinct Clouds
that wish to communicate with each other.

Our previous research [4, 5] presented an approach that
addresses this issue by introducing a scalable service-bus style
architecture that offloads the issues of locating, communicating
between and securing communication between components to
a set of dedicated system-level components. This allows
components to communicate with each other across non-
homogenous Cloud environments without the developer having
to be specifically aware of the deployment scenario.

This paper presents an example implementation of an
application developed using this component-based system.
Functional and experimental comparisons are made to show
how developing Internet-enabled applications using this
solution provides benefits over traditional approaches.

II. SYSTEM OVERVIEW

Our previous research [4] has addressed the issue of how to
deploy component-based software solutions across a varied set
of resources which form part of a larger execution
environment. The execution environment can include a mixture
of personal devices (such as workstations and smart phones),
servers (including private data centres) and public Cloud
Computing. The Cloud environment support relies on
infrastructure-as-a-service resources (IAAS) being deployed to
execute our tailored runtime environment. Fig. 1 depicts a
standard deployment of multiple components across multiple
compute resources which work together to form a working
application.

A strong focus has been placed on ensuring that the
software developer is abstracted away from implementation
specifics, such as having to know where specific components
are executing and what resources are available for that user. A
name-space approach has been taken to segregate available

IT in Industry, vol. 5, no. 2, 2017 Published online 16-Mar-2017

Copyright ISSN (Print): 2204-0595

© Wallis, Henskens, Hannaford, and Paul 2017 17 ISSN (Online): 2203-1731

resources in a way that ensures users can access any compute
and storage resources available to them, while also providing
protection from malicious access.

A. Application Bootstrapping

Each application in this component-based environment is
defined by an “application XML” file. This file lists the
components required to execute that specific application.
Application XML files can either be stored and loaded from a
local cache on a user’s PC, or accessed via a uniform resource
identifier (URI). MIME types and web browser plugins provide
a direct means for users to execute applications simply by
clicking a link on a website or selecting a bookmark, in much
the same way that HTML5 [6] offline applications execute.
The bootstrapping triggered by a user’s request to start an
application loads the application XML and completes the
necessary pre-work required to allow the execution of that
application. These pre-work steps are fulfilled by system-level
components providing services such as component resolution.

A key focus of our research is ensuring that what is
provided is an open API, rather than another distinct platform
as a service environment. Our research describes the overall
system architecture, including the set of system-level
components required to facilitate application execution. It is
left to the specific implementation of this API to make

decisions around how the system-level components will
internally function. This ensures that the API is open and
capable of being implemented as a wrapper around existing
platform-as-a-service models. A prototype implementation of
the system-level components has been built as part of this
research to provide a basis for comparison with existing
distributed web application development approaches.

B. System Level Components

The API defined by our research permits implementation of
a lazy-loading approach to component resolution. Application
components are defined as having an initial state, with the
options being:

 Mandatory - the component must be available in the
user’s namespace during application bootstrapping.

 Lazy - the component can be resolved at a later date
when the first call to it is made from another component
within the application.

No matter if the component’s state is mandatory or lazy, the
resolution of the component is handled by the system-level
“component locality service” component. This component is
currently responsible for extracting the global unique ID
(GUID) for that component from the application XML and
resolving it to a URI which the “component loader service”
component can then use to download and instantiate the
component within the environment. As discussed previously,
the process followed to complete this resolution step is left for
the implementation, however the API implementor sees fit.
Implementations during prototyping of the solution have used a
global component directory. Once the URI is obtained the
“component loader service” component must connect to the
URI to download the specific version of the component
requested. At this stage, two actions can occur:

 The compute resource bootstrapping the application is
online and able to access the URI. The component is
downloaded and instantiated.

 The compute resource bootstrapping the application is
offline, or online in a partitioned state such that it is
unable to access the URI. The component is then
marked as unavailable. If the component initial state is
marked as “mandatory” in the application definition
then the application fails to bootstrap. If the component
initial state is marked as lazy then the component that
made the initial call that triggered the component
instantiation will receive an exception.

To facilitate these actions there are a number of system
level components that are expected to be provided by the
runtime environment. These include the following:

Application Bootstrapper - responsible for loading the
application XML and identifying the set of mandatory
components required to execute the application.

 Component Locality Service - responsible for receiving
requests for references to components, locating the
component in the relevant namespace and returning a
valid reference. The reference will either be pointing to

Fig. 1. Deployment overview.

IT in Industry, vol. 5, no. 2, 2017 Published online 16-Mar-2017

Copyright ISSN (Print): 2204-0595

© Wallis, Henskens, Hannaford, and Paul 2017 18 ISSN (Online): 2203-1731

an existing instantiated copy of the component within
the users namespace, or a download URI which the
component loader service can use to download the
component code module and instantiate a new instance
of the requested component.

 Component Loader Service - responsible for taking an
un-instantiated component reference, downloading the
component code module and instantiating it into a local
stub object usable by the calling component

 Component Cache Service - responsible for storing
cached versions of component code modules in order to
speed up bootstrapping and support offline execution.

 Component Execution Service - a programming
language-specific service that can take a component
code module and physically execute it on a host. This is
the key building block of allowing an application to be
built out of components written in different
programming languages.

 Component Communication Service - responsible for
implementing the inter-component service bus on a
local host and passing messages to other instances of
the communication service on other hosts as required.

A key feature of the API presented in our research is that
software engineers can implement their own versions of the
system-level components, such as the “component loader
service” component. This gives the overall solution the ability
to be retrofitted and wrapped around existing component-based
solutions and reduces the risk that the solution is to become yet
another competing Platform-as-a-service (PAAS) environment
[2].

The issue of updating components within the component
cache service is addressed by using a version tag in the
application definition. If a developer wishes to deploy a newer
version of a component they can issue an updated application
XML definition file to the user. The “component cache
service” component uses the component name and the
component version as a key into the cache store. If a newer
version of a component is requested then the cache lookup will
fail and the “component loader service” component can then
obtain the newer component via the appropriate means.

A diagram showing this bootstrapping workflow is given in
Fig. 2.

C. Application Components

For a developer to build a solution using this framework the
following development process is followed:

1. An application XML file is created defining the
application name and version.

2. The initial application component is built. This
component is responsible for starting the application
and often provides the user interface, and its inclusion
is mandatory to the application XML.

3. Any other components which are required by the initial
application component are then built. Depending on

the configuration these components can be added to the
application XML as either mandatory or lazy-loading.

4. For each new component being created the interface
must be defined. The interface can either be chosen
from a library of pre-existing interfaces (supporting
reusability and loose-coupling) or created manually for
this specific component. The former is promoted as the
preferred option.

5. All components are then registered and made available.
As discussed above, during the prototyping phase of
this research availability was achieved by registering
the component in the “global component directory”.

6. The application XML is then distributed to the end
user for execution.

For an end user to be able to execute the application there
are a number of prerequisites:

 The initial host bootstrapping the application must have
access to the application XML file.

 The runtime environment must be installed on the
device being used to bootstrap the environment, and any
device that wishes to host the execution of components.

 The runtime environment must contain a “component
execution service” component for each programming
language required by a component of the application, as
discussed below. These should be listed as mandatory
components within the application XML and are
resolved just like any other non-system component in
the environment.

D. Building, Finding and Instantiating Components

The “component loader service” component has a number
of key responsibilities. If the “component locality service”
component passes a reference back to an existing instantiated
component then it just needs to translate that reference into a
stub object which the calling component can then use. If a
download URI reference is provided instead then the
“component loader service” component must download the
component code module and work with the “component cache
service” component in order to instantiate a new copy of the
component. After the component is instantiated it is then
registered in the user’s namespace in the “global component
directory” so future requests can be resolved to this executing
copy.

A component reference is made up of two parts - a URI
pointing to the instance of the “component communication
service” component which is executing on the same host as the
requested component and a GUID that represents that specific
component instance. Whether the “component locality service”
returns a reference to an existing executing component or the
download URI to instantiate a new instance is based on a
number of factors;

 If no reference to the component can be found in the
global component directory then an error is returned.
This can occur if the developer fails to register the
component correctly during the development cycle.

IT in Industry, vol. 5, no. 2, 2017 Published online 16-Mar-2017

Copyright ISSN (Print): 2204-0595

© Wallis, Henskens, Hannaford, and Paul 2017 19 ISSN (Online): 2203-1731

Fig. 2. Boostrapping workflow.

 If the component is located in the directory but no
instantiated instances are registered then a download
URI is returned. This download URI is provided by the
developer during the registration process.

 If an instance of the component is located then the
component’s “scope” value is checked. The scope of a
component is defined by the developer during the
registration process and is discussed further below. If
the component scope is valid for the inbound request
then an instance reference is returned, otherwise the
download URI is returned.

The application developer defines the scope of each
component during the registration process. The following
options are valid:

1. A “global” scope means that the environment frame-
work will only ever instantiate a single copy of that
component. The component will be owned by the
developer and all users wishing to access that compo-
nent will access a shared instance. This option allows
the system to provide a “software-as-a-service” style
component model.

2. A “user” scope means that the environment framework
will instantiate a copy of the component per requesting
user namespace. The component will be owned by the

requestor and be shared across all requests coming
from requestors within that same namespace.

3. A ”request” scope means that the component will be
instantiated for every request and then thrown away
once de-referenced. The component will only exist for
the duration of a single call.

E. Inter-Component Communication

The “component loader service” returns a stub back to the
calling component in order to provide an abstraction between
calling local components and remote components. If a call is
made into the stub then that stub calls the “component
communication service” component which is responsible for
passing messages between components within the
environment. Each physical host running a copy of the
execution environment has a running copy of the “component
communication service”. This service acts as a local service
bus for inter-component communication and an uplink to other
running instances of the communication service that are
referenced by the “component locality service” component.

It is the choice of the “component loader service”
component where to physically instantiate components within
the user’s namespace. By default new components are
instantiated on the same host as the requesting component. An
option exists, though for the “component loader service”
component to pass the instantiation request to another instance

IT in Industry, vol. 5, no. 2, 2017 Published online 16-Mar-2017

Copyright ISSN (Print): 2204-0595

© Wallis, Henskens, Hannaford, and Paul 2017 20 ISSN (Online): 2203-1731

of the “component loader service” component attached to
another host within that user’s namespace. This is achieved by
passing the request to the “component communication service”
component on that remote host. Resolution is then completed
using the above process on the remote host and a reference is
passed back between the communication services. Future
access then is transparent and handled by the “component
communication service” component.

F. Review

The system described above is intentionally light-weight.
Decisions on where to instantiate new components and how to
store a directory of instantiated components within a user’s
namespace, and the global namespace, are left to the imple-
mentations of the various system level components. The aim of
this research is to provide an open API for implementing a
global component-based application framework that allows
developers to tailor the core environment to their specific
needs. For example, one application could execute within a
user’s environment where the user is running a “component
locality service” component that relies on a global directory
and without any change, that same application could execute
within a user’s environment where the “component locality
service” component relied on a massively distributed hash map
for storing component references. The abstraction of system-
level components provides flexibility, a path for growth, and
the ability to retrofit this new framework on top of existing
component-based software solutions and Cloud platform-as-a-
service environments.

III. IMPLEMENTATIONS

To prove the viability of the system a prototype
implementation has been developed. This involved building
prototype versions of the six system-level components and then
building an application on top of that environment. An
application was chosen that already had a Web 2.0
implementation in order to provide a method for comparison
and experimentation.

The application chosen to base the prototype on is QuON
[7]. QuON is a typical Web 2.0 MVC [8] application which
provides users with the ability to design, deploy and complete
online surveys. The surveys are defined by researchers and the
QuON system has been tailored to allow maximum flexibility
and customisation. Custom branding, custom question types
and custom output formats are all supported, including external
reporting and system integrations. Deployment of QuON has
followed a typical LAMP process of Apache web server, Linux
operating system, MySQL database and PHP execution
environment. QuON is run as a software-as-a-service model
with the server-side hosted by the University of Newcastle.
Clients interact with the server using a web browser. The web
browser is fed Javascript and HTML5 compliant client-side
code. QuON is used heavily by researchers in the health-
behaviour research space which requires stringent ethics
approval and regulation.

A number of limiting factors have been identified with the
existing Web 2.0 QuON application:

 There is no capability for a survey to be taken while the
end user is offline. The user must remain online and
connected to the Internet throughout the duration of the
survey in order for their web browser to be able to
communicate with the server hosting the QuON web
application.

 To execute the survey the user must have access to a
web browser. This limits the client to completing the
survey on devices with a standards-compliant, up-to-
date, web browser. As an example, there is no support
for having the user complete the survey using a voice-
enabled client or a native mobile-app. The current
QuON mobile solution relies on a mobile web browser
which does not provide the most optimal user
experience when compared to a native mobile-app.

 Persistence of survey results is limited to a single
MySQL database. There is no capability of allowing
researchers to store their survey result sets in their own
data stores. This opens up data ownership and privacy
concerns which are a concern during the ethics approval
process.

The goal of the prototype was to address the above three
concerns using the presented distributed component-based
execution environment, while showing that distributed
component execution could be achieved with little-to-no effort
by the application developers. Focus was also given to the
possibility of porting existing software-as-a-service
applications over to the new component-based framework.

The first part of the prototype focused on the
implementation of the required system-level components. The
following system level components were developed:

 Application Bootstrapper - a Java boot loader capable
of kickstarting applications.

 Component Locality Service - a Java locality service
which interacted with a single global component
directory.

 Component Loader Service - a Java loader service that
was capable of handling both instantiated references
and downloadable URI requests.

 Component Cache Service - a Java component cache
service that was able to cache local copies of the
component code modules.

 Java Component Execution Service - a Java component
execution service which can execute components
written in the Java programming language, including
both system and application components.

 LAMP Component Execution Service - a wrapper
execution service which is capable of deploying an
Apache web server, PHP, MySQL bundle. This is used
to wrap existing legacy components of the application.

 HTML5 Component Execution Service - a service
capable of executing an HTML5 based user interface

IT in Industry, vol. 5, no. 2, 2017 Published online 16-Mar-2017

Copyright ISSN (Print): 2204-0595

© Wallis, Henskens, Hannaford, and Paul 2017 21 ISSN (Online): 2203-1731

component, including managing a thin web browser on
the users device.

 Component Communication Service - a service-bus
component implemented on top of Apache ServiceMix
[9].

With those system-level components in place the following
QuON-specific application components were defined:

 QuON UI - a HTML5 component responsible for taking
a survey definition, presenting a self-contained HTML5
user interface and generating a survey result set
message

 QuON Survey - a LAMP component which wrapped
the existing “controllers” from the legacy QuON MVC
implementation.

 QuON Data Store - a Java component responsible for
persisting survey result sets and survey definitions.

The QuON UI component was evolved from the existing
“view” layer, taken from the legacy MVC application. The
HTML was re-worked to provide a self-contained HTML5
experience that integrated back to the greater application
framework using a REST communication channel. The QuON
Survey component contained the “controllers” from the legacy
MVC application, extracted from the legacy application and
wrapped in a component interface. The QuON Data Store
component replaced the “model” layer from the legacy MVC
application and acted as an object store for survey definitions
and survey result sets.

These three components were orchestrated into two
separate applications:

 The “QuON Server” application contained both the
”QuON Survey” and “QuON Data Store” components.
This allowed research groups to instantiate their own
copies of the survey engine and data store.

 The “QuON Client” application which allowed end
users to request surveys from a “QuON Server”
application. Multiple “QuON Client” applications can
connect to the same “QuON Survey” application.

The following high-level application flow was established:

1. The researcher bootstrapped the “QuON Server”
application on their own server. This registered the
instance of the “QuON Survey” component within the
global namespace. As part of the component startup
the researcher is provided with the GUID for the
“QuON Survey” component.

2. The researcher distributes a link to the “QuON Client”
application XML to the end users. Part of this URL is a
parameter referencing the GUID of the “QuON
Survey” component instantiated above. This parameter
is passed through the application bootstrap process to
the “QuON UI” component.

3. The end user bootstraps the “QuON Client” application
on their local machine. The “QuON UI” component

communicates with the “QuON Survey” component
over the service bus provided via the “Component
Communication Service” component and requests a list
of the available surveys.

4. The surveys list is provided to the end user where they
select the survey they wish to complete. This triggers
another message from the “QuON UI” component to
the “QuON Survey” component requesting the survey
definition.

5. The “QuON UI” component provides the survey to the

end user to complete. At the completion of the survey

a survey result set is generated.

6. The “QuON UI” component passes the survey result
set to the “QuON Survey” component which in turn
passes it to the “QuON Data Store” component for
persistent storage.

IV. EVALUATIONS

The primary aim of the prototype described above was to
provide a platform for both experimental and functional
comparisons between the new distributed component-based
framework and existing web application approaches. The
evaluation has been broken down into performance analysis,
functional comparison and software development process
review.

A. Performance

End-to-end performance was compared between the two
solutions on the basis of round-trip latency. Latency was
measured at application startup and also through a typical end-
to-end user flow.

Using the legacy Web 2.0 application, startup was
measured by timing from starting the web browser through to
when the initial survey page was displayed to the end user.
Application startup latency with the distributed component-
based architecture was measured from the start of application
bootstrap until the time where the initial survey page was
displayed to the end user. Over a series of 100 executions the
averages shown in Fig. 3 were collected. It can be seen that
initial startup performance was worse under the new distributed
component-based architecture upon initial application startup.
This is due to all the components needing to be resolved and
loaded. On further application startups, though, the average is
only marginally worse than the legacy solution due to local
component caching.

The next performance metric measured was the round-trip
time taken to progress through 20 survey questions. This
involved automating the answer submission process with a
delay of 1 second per question. Over a series of 100 executions
the averages shown in Fig. 4 were collected. As shown, the
round-trip time was improved with the component-based
solution. This can be explained by the fact that all
communication between components when moving from one
question to the next is all local to the “QuON UI” component,
whereas with the Web 2.0 solution a HTTP request/response
round trip to the server is required each time. There is an initial
performance hit at the start of the process while the survey

IT in Industry, vol. 5, no. 2, 2017 Published online 16-Mar-2017

Copyright ISSN (Print): 2204-0595

© Wallis, Henskens, Hannaford, and Paul 2017 22 ISSN (Online): 2203-1731

definition is loaded into the “QuON UI” component but after
that the performance benefits are clear.

The network data exchanged between the various
components of the solutions was also measured. The data
shown in Fig. 5 was collected over a simulation used above
with 100 executions over a 20 question survey. With the
inclusion of component caching to the framework the bytes
transferred was dramatically lower for the distributed
component-based application when compared to the Web 2.0
application. This is especially true for subsequent survey runs
after all survey definitions and components are cached. The
reduction in meta-data being transferred with each survey
question/answer pair (i.e. with data such as HTTP headers) also

assisted in keeping the average bytes transferred lower for the
Web 2.0 application.

B. Functional

A functional comparison between the Web 2.0 solution and
the component-based solution was performed based on the
three identified short comings of the Web 2.0 solution,
documented above. Building the application in a distributed
component-based manner allowed us to address the three main
criticisms of the legacy QuON application listed above. Offline
client support is provided assuming the client has bootstrapped
the QuON Client application at least once in the past. The
caching process ensures that a copy of the “QuON UI”
component and all the system level components are cached
locally. The “QuON UI” component also caches the survey
definition. Any survey result set messages are passes to the
“component communication service” component for
asynchronous delivery once the client comes online again.
While the “QuON UI” component in this prototype was
implemented using a “HTML UI” executing component, the
abstraction generated would easily allow a completely different
user interface component to be developed. The loose coupling
between the components allows the end user to easily switch
between user interfaces. Packaging the “QuON server” as an
application in its own right it allows the researchers to
instantiate their own instances of the back-end, hence allowing
for them to manage their own data storage and privacy.

From a user experience perspective the end user is required
to have additional software installed on their PC in order for
the distributed component-based application to execute.
Parallels can be drawn though to the common requirement to
have software such as a Java runtime environments (JRE)
installed on client PCs, and hence is not seen to be a barrier to
entry. Bootstrapping applications is performed easily by
allowing the user to click on an application XML link in their
web browser, and with the correct MIME type and application
hooks configured within the browser, have it automatically
bootstrap the application.

C. Software Development

From a software development perspective we have shown
that it is possible to re-use existing Web 2.0 components within
the new distributed component-based framework by wrapping
them within component interfaces. We have also shown that,
once the runtime environment and system-level components
are available, the developer needs only be concerned with
defining the interfaces and building the application-specific
components required for their application. The runtime
environment handles the complexity of the distributed nature in
which the components are executing.

V. CONCLUSION

This research has shown that it is possible to build

solutions using our previously published distributed

component-based framework. A sample application is

presented and used to provide functional and experimental

comparisons between existing web technologies and the

approach defined by this research. While the prototype may

not be feature complete, it does show that once the base

Fig. 3. Performance - startup.

Fig. 4. Performance – 20 questions.

Fig. 5. Network data – 20 questions.

IT in Industry, vol. 5, no. 2, 2017 Published online 16-Mar-2017

Copyright ISSN (Print): 2204-0595

© Wallis, Henskens, Hannaford, and Paul 2017 23 ISSN (Online): 2203-1731

environment is available the developer can build an

application without needing to be concerned with the

intricacies of inter-component distributed communication, on

a massively distributed scale. A suitably advanced set of

system-level components would allow for an end user to

easily distribute their instantiated components over a set of

hardware available to them within their namespace. The

decision on where the components are instantiated could

either be manual, or automated. Complexities presented by

such manual choices are discussed in our previous work [10].

REFERENCES

[1] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley Professional, 1997.

[2] G. Boss, P. Malladi, D. Quan, L. Legregni, and H. Hall, (2007) Cloud
computing. [Online]. Available: http://download.boulder.ibm.com/
ibmdl/pub/software/dw/wes/hipods/Cloud computing wp final 8Oct.pdf

[3] W3C. (2004) Web services architecture. [Online]. Available:
http://www.w3.org/TR/ws-arch/

[4] M. Wallis, F. A. Henskens, and M. R. Hannaford, “Overcast skies -
What cloud computing should be?” in 1st International Conference on
Cloud Computing and Services Science (CLOSER 2011), 2011.

[5] ——, “The super-browser: A new paradigm for web applications.” in
INTERNET 2012: The Fourth International Conference on Evolving
Internet (INTERNET), 2012.

[6] I. Hickson, HTML 5 Editor’s Draft, w3c editor’s draft 2011 ed., W3C,
January 2011. [Online]. Available: http://dev.w3.org/html5/
spec/Overview.html

[7] D. Paul, M. Wallis, F. Henskens, and K. Nolan, “Quon - A generic
platform for the collation and sharing of web survey data,” in 9th
International Conference on Web Information Systems and
Technologies (WEBIST), SCITEPRESS, May 2013.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Pearson Education,
1994.

[9] A. S. Foundation. (2015) Apache servicemix. [Online]. Available:
http://servicemix.apache.org/

[10] M. Wallis, F. Henskens, and M. Hannaford, “Peer-based complex profile
management In Software Engineering”, Artificial Intelligence,
Networking and Parallel/Distributed Computing, Springer-Verlag, 2011,
pp. 103–111.

	I. Introduction
	II. System Overview
	A. Application Bootstrapping
	B. System Level Components
	C. Application Components
	D. Building, Finding and Instantiating Components
	E. Inter-Component Communication
	F. Review

	III. IMPLEMENTATIONS
	IV. EVALUATIONS
	A. Performance
	B. Functional
	C. Software Development

	V. Conclusion
	References

