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Abstract—In previous publications we have introduced the 

concept of using a component-based software engineering 

paradigm to build Internet-enabled applications. We have 

proposed that this design allows for greater flexibility in 

deployment, better utilisation of resources and a reduction in 

total application development effort. We have described a system 

and realised that system as an API that can be used to design, 

build and execute such components. In this report   we provide 

an overview of the key system components and present an 

implementation of an application developed using the system. We 

use this application to perform experimental and functional 

comparisons to show that the system provides advancements over 

the status quo. 

Keywords—cloud computing; component-based software 

engineering; platform-as-a-service 

I.  INTRODUCTION  

Component-based software engineering [1] is a software 
design paradigm focusing on loosely coupled, functionally 
distinct executing components that are orchestrated together to 
form a working system. Traditionally, these components all 
executed on a single host. The move into distributed 
component-based software engineering saw a paradigm shift 
that allow components executing on multiple hosts to function 
together, over a network, to form a working application. The 
network connecting the components was generally an Intranet, 
or a limited Internet, joining a small number of finite 
components. Cloud Computing [2] saw further evolution of 
distributed computing by providing a remote platform for the 
execution of software, including software components. When a 
component execution environment is deployed on Cloud 
resources it is generally viewed as a platform-as-a- service 
(PAAS) model. 

If a software engineer wishes to build an application with 
multiple components executing in multiple cloud 
environments, with the current distributed component-based 
and Cloud Computing platforms, then the approaches are 
cumbersome. The developer is required to identify the end 
points of the inter-platform connectivity and write code 
specific to each Cloud environment that performs the 

integration task. For example, the developer may choose to 
implement a web service [3] “server” component in one Cloud, 
and a web service “client” component in another Cloud in 
order to build a connection between the two components. This 
approach does not scale well when you have a many-to- many 
relationship between components in multiple distinct Clouds 
that wish to communicate with each other. 

Our previous research [4, 5] presented an approach that 
addresses this issue by introducing a scalable service-bus style 
architecture that offloads the issues of locating, communicating 
between and securing communication between components to 
a set of dedicated system-level components. This allows 
components to communicate with each other across non-
homogenous Cloud environments without the developer having 
to be specifically aware of the deployment scenario. 

This paper presents an example implementation of an 
application developed using this component-based system. 
Functional and experimental comparisons are made to show 
how developing Internet-enabled applications using this 
solution provides benefits over traditional approaches. 

II. SYSTEM OVERVIEW 

Our previous research [4] has addressed the issue of how to 
deploy component-based software solutions across a varied set 
of resources which form part of a larger execution 
environment. The execution environment can include a mixture 
of personal devices (such as workstations and smart phones), 
servers (including private data centres) and public Cloud 
Computing. The Cloud environment support relies on 
infrastructure-as-a-service resources (IAAS) being deployed to 
execute our tailored runtime environment. Fig. 1 depicts a 
standard deployment of multiple components across multiple 
compute resources which work together to form a working 
application. 

A strong focus has been placed on ensuring that the 
software developer is abstracted away from implementation 
specifics, such as having to know where specific components 
are executing and what resources are available for that user. A 
name-space approach has been taken to segregate available 
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resources in a way that ensures users can access any compute 
and storage resources available to them, while also providing 
protection from malicious access. 

A. Application Bootstrapping 

Each application in this component-based environment is 
defined by an “application XML” file. This file lists the 
components required to execute that specific application. 
Application XML files can either be stored and loaded from a 
local cache on a user’s PC, or accessed via a uniform resource 
identifier (URI). MIME types and web browser plugins provide 
a direct means for users to execute applications simply by 
clicking a link on a website or selecting a bookmark, in much 
the same way that HTML5 [6] offline applications execute. 
The bootstrapping triggered by a user’s request to start an 
application loads the application XML and completes the 
necessary pre-work required to allow the execution of that 
application. These pre-work steps are fulfilled by system-level 
components providing services such as component resolution. 

A key focus of our research is ensuring that what is 
provided is an open API, rather than another distinct platform 
as a service environment. Our research describes the overall 
system architecture, including the set of system-level 
components required to facilitate application execution. It is 
left to the specific implementation of this API to make 

decisions around how the system-level components will 
internally function. This ensures that the API is open and 
capable of being implemented as a wrapper around existing 
platform-as-a-service models. A prototype implementation of 
the system-level components has been built as part of this 
research to provide a basis for comparison with existing 
distributed web application development approaches. 

B. System Level Components 

The API defined by our research permits implementation of 
a lazy-loading approach to component resolution. Application 
components are defined as having an initial state, with the 
options being: 

 Mandatory - the component must be available in the 
user’s namespace during application bootstrapping. 

 Lazy - the component can be resolved at a later date 
when the first call to it is made from another component 
within the application. 

No matter if the component’s state is mandatory or lazy, the 
resolution of the component is handled by the system-level 
“component locality service” component. This component is 
currently responsible for extracting the global unique ID 
(GUID) for that component from the application XML and 
resolving it to a URI which the “component loader service” 
component can then use to download and instantiate the 
component within the environment. As discussed previously, 
the process followed to complete this resolution step is left for 
the implementation, however the API implementor sees fit. 
Implementations during prototyping of the solution have used a 
global component directory. Once the URI is obtained the 
“component loader service” component must connect to the 
URI to download the specific version of the component 
requested. At this stage, two actions can occur: 

 The compute resource bootstrapping the application is 
online and able to access the URI. The component is 
downloaded and instantiated. 

 The compute resource bootstrapping the application is 
offline, or online in a partitioned state such that it is 
unable to access the URI. The component is then 
marked as unavailable. If the component initial state is 
marked as “mandatory” in the application definition 
then the application fails to bootstrap. If the component 
initial state is marked as lazy then the component that 
made the initial call that triggered the component 
instantiation will receive an exception. 

To facilitate these actions there are a number of system 
level components that are expected to be provided by the 
runtime environment. These include the following: 

Application Bootstrapper - responsible for loading the 
application XML and identifying the set of mandatory 
components required to execute the application. 

 Component Locality Service - responsible for receiving 
requests for references to components, locating the 
component in the relevant namespace and returning a 
valid reference. The reference will either be pointing to 

 

Fig. 1. Deployment overview. 
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an existing instantiated copy of the component within 
the users namespace, or a download URI which the 
component loader service can use to download the 
component code module and instantiate a new instance 
of the requested component. 

 Component Loader Service - responsible for taking an 
un-instantiated component reference, downloading the 
component code module and instantiating it into a local 
stub object usable by the calling component 

 Component Cache Service - responsible for storing 
cached versions of component code modules in order to 
speed up bootstrapping and support offline execution. 

 Component Execution Service - a programming 
language-specific service that can take a component 
code module and physically execute it on a host. This is 
the key building block of allowing an application to be 
built out of components written in different 
programming languages. 

 Component Communication Service - responsible for 
implementing the inter-component service bus on a 
local host and passing messages to other instances of 
the communication service on other hosts as required. 

A key feature of the API presented in our research is that 
software engineers can implement their own versions of the 
system-level components, such as the “component loader 
service” component. This gives the overall solution the ability 
to be retrofitted and wrapped around existing component-based 
solutions and reduces the risk that the solution is to become yet 
another competing Platform-as-a-service (PAAS) environment 
[2]. 

The issue of updating components within the component 
cache service is addressed by using a version tag in the 
application definition. If a developer wishes to deploy a newer 
version of a component they can issue an updated application 
XML definition file to the user. The “component cache 
service” component uses the component name and the 
component version as a key into the cache store. If a newer 
version of a component is requested then the cache lookup will 
fail and the “component loader service” component can then 
obtain the newer component via the appropriate means. 

A diagram showing this bootstrapping workflow is given in 
Fig. 2. 

C. Application Components 

For a developer to build a solution using this framework the 
following development process is followed: 

1. An application XML file is created defining the 
application name and version. 

2. The initial application component is built. This 
component is responsible for starting the application 
and often provides the user interface, and its inclusion 
is mandatory to the application XML. 

3. Any other components which are required by the initial 
application component are then built. Depending on 

the configuration these components can be added to the 
application XML as either mandatory or lazy-loading. 

4. For each new component being created the interface 
must be defined. The interface can either be chosen 
from a library of pre-existing interfaces (supporting 
reusability and loose-coupling) or created manually for 
this specific component. The former is promoted as the 
preferred option. 

5. All components are then registered and made available. 
As discussed above, during the prototyping phase of 
this research availability was achieved by registering 
the component in the “global component directory”. 

6. The application XML is then distributed to the end 
user for execution. 

For an end user to be able to execute the application there 
are a number of prerequisites: 

 The initial host bootstrapping the application must have 
access to the application XML file. 

 The runtime environment must be installed on the 
device being used to bootstrap the environment, and any 
device that wishes to host the execution of components. 

 The runtime environment must contain a “component 
execution service” component for each programming 
language required by a component of the application, as 
discussed below. These should be listed as mandatory 
components within the application XML and are 
resolved just like any other non-system component in 
the environment. 

D. Building, Finding and Instantiating Components 

The “component loader service” component has a number 
of key responsibilities. If the “component locality service” 
component passes a reference back to an existing instantiated 
component then it just needs to translate that reference into a 
stub object which the calling component can then use. If a 
download URI reference is provided instead then the 
“component loader service” component must download the 
component code module and work with the “component cache 
service” component in order to instantiate a new copy of the 
component. After the component is instantiated it is then 
registered in the user’s namespace in the “global component 
directory” so future requests can be resolved to this executing 
copy. 

A component reference is made up of two parts - a URI 
pointing to the instance of the “component communication 
service” component which is executing on the same host as the 
requested component and a GUID that represents that specific 
component instance. Whether the “component locality service” 
returns a reference to an existing executing component or the 
download URI to instantiate a new instance is based on a 
number of factors; 

 If no reference to the component can be found in the 
global component directory then an error is returned. 
This can occur if the developer fails to register the 
component correctly during the development cycle. 
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Fig. 2. Boostrapping workflow. 

 

 If the component is located in the directory but no 
instantiated instances are registered then a download 
URI is returned. This download URI is provided by the 
developer during the registration process. 

 If an instance of the component is located then the 
component’s “scope” value is checked. The scope of a 
component is defined by the developer during the 
registration process and is discussed further below. If 
the component scope is valid for the inbound request 
then an instance reference is returned, otherwise the 
download URI is returned. 

The application developer defines the scope of each 
component during the registration process. The following 
options are valid: 

1. A “global” scope means that the environment frame- 
work will only ever instantiate a single copy of that 
component. The component will be owned by the 
developer and all users wishing to access that compo- 
nent will access a shared instance. This option allows 
the system to provide a “software-as-a-service” style 
component model. 

2. A “user” scope means that the environment framework 
will instantiate a copy of the component per requesting 
user namespace. The component will be owned by the 

requestor and be shared across all requests coming 
from requestors within that same namespace. 

3. A ”request” scope means that the component will be 
instantiated for every request and then thrown away 
once de-referenced. The component will only exist for 
the duration of a single call. 

E. Inter-Component Communication 

The “component loader service” returns a stub back to the 
calling component in order to provide an abstraction between 
calling local components and remote components. If a call is 
made into the stub then that stub calls the “component 
communication service” component which is responsible for 
passing messages between components within the 
environment. Each physical host running a copy of the 
execution environment has a running copy of the “component 
communication service”. This service acts as a local service 
bus for inter-component communication and an uplink to other 
running instances of the communication service that are 
referenced by the “component locality service” component. 

It is the choice of the “component loader service” 
component where to physically instantiate components within 
the user’s namespace. By default new components are 
instantiated on the same host as the requesting component. An 
option exists, though for the “component loader service” 
component to pass the instantiation request to another instance 
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of the “component loader service” component attached to 
another host within that user’s namespace. This is achieved by 
passing the request to the “component communication service” 
component on that remote host. Resolution is then completed 
using the above process on the remote host and a reference is 
passed back between the communication services. Future 
access then is transparent and handled by the “component 
communication service” component. 

F. Review 

The system described above is intentionally light-weight. 
Decisions on where to instantiate new components and how to 
store a directory of instantiated components within a user’s 
namespace, and the global namespace, are left to the imple- 
mentations of the various system level components. The aim of 
this research is to provide an open API for implementing a 
global component-based application framework that allows 
developers to tailor the core environment to their specific 
needs. For example, one application could execute within a 
user’s environment where the user is running a “component 
locality service” component that relies on a global directory 
and without any change, that same application could execute 
within a user’s environment where the “component locality 
service” component relied on a massively distributed hash map 
for storing component references. The abstraction of system-
level components provides flexibility, a path for growth, and 
the ability to retrofit this new framework on top of existing 
component-based software solutions and Cloud platform-as-a-
service environments. 

III. IMPLEMENTATIONS 

To prove the viability of the system a prototype 
implementation has been developed. This involved building 
prototype versions of the six system-level components and then 
building an application on top of that environment. An 
application was chosen that already had a Web 2.0 
implementation in order to provide a method for comparison 
and experimentation. 

The application chosen to base the prototype on is QuON 
[7]. QuON is a typical Web 2.0 MVC [8] application which 
provides users with the ability to design, deploy and complete 
online surveys. The surveys are defined by researchers and the 
QuON system has been tailored to allow maximum flexibility 
and customisation. Custom branding, custom question types 
and custom output formats are all supported, including external 
reporting and system integrations. Deployment of QuON has 
followed a typical LAMP process of Apache web server, Linux 
operating system, MySQL database and PHP execution 
environment. QuON is run as a software-as-a-service model 
with the server-side hosted by the University of Newcastle. 
Clients interact with the server using a web browser. The web 
browser is fed Javascript and HTML5 compliant client-side 
code. QuON is used heavily by researchers in the health-
behaviour research space which requires stringent ethics 
approval and regulation. 

A number of limiting factors have been identified with the 
existing Web  2.0 QuON application: 

 There is no capability for a survey to be taken while the 
end user is offline. The user must remain online and 
connected to the Internet throughout the duration of the 
survey in order for their web browser to be able to 
communicate with the server hosting the QuON web 
application. 

 To execute the survey the user must have access to a 
web browser. This limits the client to completing the 
survey on devices with a standards-compliant, up-to-
date, web browser. As an example, there is no support 
for having the user complete the survey using a voice-
enabled client or a native mobile-app. The current 
QuON mobile solution relies on a mobile web browser 
which does  not provide the most optimal user 
experience when compared to a native mobile-app. 

 Persistence of survey results is limited to a single 
MySQL database. There is no capability of allowing 
researchers to store their survey result sets in their own 
data stores. This opens up data ownership and privacy 
concerns which are a concern during the ethics approval 
process. 

The goal of the prototype was to address the above three 
concerns using the presented distributed component-based 
execution environment, while showing that distributed 
component execution could be achieved with little-to-no effort 
by the application developers. Focus was also given to the 
possibility of porting existing software-as-a-service 
applications over to the new component-based framework. 

The first part of the prototype focused on the 
implementation of the required system-level components. The 
following system level components were developed: 

 Application Bootstrapper - a Java boot loader capable 
of kickstarting applications. 

 Component Locality Service - a Java locality service 
which interacted with a single global component 
directory. 

 Component Loader Service - a Java loader service that 
was capable of handling both instantiated references 
and downloadable URI requests. 

 Component Cache Service - a Java component cache 
service that was able to cache local copies of the 
component code modules. 

 Java Component Execution Service - a Java component 
execution service which can execute components 
written in the Java programming language, including 
both system and application components. 

 LAMP Component Execution Service - a wrapper 
execution service which is capable of deploying an 
Apache web server, PHP, MySQL bundle. This is used 
to wrap existing legacy components of the application. 

 HTML5 Component Execution Service - a service 
capable of executing an HTML5 based user interface 
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component, including managing a thin web browser on 
the users device. 

 Component Communication Service - a service-bus 
component implemented on top of Apache ServiceMix 
[9]. 

With those system-level components in place the following 
QuON-specific application components were defined: 

 QuON UI - a HTML5 component responsible for taking 
a survey definition, presenting a self-contained HTML5 
user interface and generating a survey result set 
message 

 QuON Survey - a LAMP component which wrapped 
the existing “controllers” from the legacy QuON MVC 
implementation. 

 QuON Data Store - a Java component responsible for 
persisting survey result sets and survey definitions. 

The QuON UI component was evolved from the existing 
“view” layer, taken from the legacy MVC application. The 
HTML was re-worked to provide a self-contained HTML5 
experience that integrated back to the greater application 
framework using a REST communication channel. The QuON 
Survey component contained the “controllers” from the legacy 
MVC application, extracted from the legacy application and 
wrapped in a component interface. The QuON Data Store 
component replaced the “model” layer from the legacy MVC 
application and acted as an object store for survey definitions 
and survey result sets. 

These three components were orchestrated into two 
separate applications: 

 The “QuON Server” application contained both the 
”QuON Survey” and “QuON Data Store” components. 
This allowed research groups to instantiate their own 
copies of the survey engine and data store. 

 The “QuON Client” application which allowed end 
users to request surveys from a “QuON Server” 
application. Multiple “QuON Client” applications can 
connect to the same “QuON Survey” application. 

The following high-level application flow was established: 

1. The researcher bootstrapped the “QuON Server” 
application on their own server. This registered the 
instance of the “QuON Survey” component within the 
global namespace. As part of the component startup 
the researcher is provided with the GUID for the 
“QuON Survey” component. 

2. The researcher distributes a link to the “QuON Client” 
application XML to the end users. Part of this URL is a 
parameter referencing the GUID of the “QuON 
Survey” component instantiated above. This parameter 
is passed through the application bootstrap process to 
the “QuON UI” component. 

3. The end user bootstraps the “QuON Client” application 
on their local machine. The “QuON UI” component 

communicates with the “QuON Survey” component 
over the service bus provided via the “Component 
Communication Service” component and requests a list 
of the available surveys. 

4. The surveys list is provided to the end user where they 
select the survey they wish to complete. This triggers 
another message from the “QuON UI” component to 
the “QuON Survey” component requesting the survey 
definition.  

5. The “QuON UI” component provides the survey to the 

end user to complete. At the completion of the survey 

a survey result set is generated. 

6. The “QuON UI” component passes the survey result 
set to the “QuON Survey” component which in turn 
passes it to the “QuON Data Store” component for 
persistent storage. 

IV. EVALUATIONS 

The primary aim of the prototype described above was to 
provide a platform for both experimental and functional 
comparisons between the new distributed component-based 
framework and existing web application approaches. The 
evaluation has been broken down into performance analysis, 
functional comparison and software development process 
review. 

A. Performance 

End-to-end performance was compared between the two 
solutions on the basis of round-trip latency. Latency was 
measured at application startup and also through a typical end-
to-end user flow. 

Using the legacy Web 2.0 application, startup was 
measured by timing from starting the web browser through to 
when the initial survey page was displayed to the end user. 
Application startup latency with the distributed component-
based architecture was measured from the start of application 
bootstrap until the time where the initial survey page was 
displayed to the end user. Over a series of 100 executions the 
averages shown in Fig. 3 were collected. It can be seen that 
initial startup performance was worse under the new distributed 
component-based architecture upon initial application startup. 
This is due to all the components needing to be resolved and 
loaded. On further application startups, though, the average is 
only marginally worse than the legacy solution due to local 
component caching. 

The next performance metric measured was the round-trip 
time taken to progress through 20 survey questions. This 
involved automating the answer submission process with a 
delay of 1 second per question. Over a series of 100 executions 
the averages shown in Fig. 4 were collected. As shown, the 
round-trip time was improved with the component-based 
solution. This can be explained by the fact that all 
communication between components when moving from one 
question to the next is all local to the “QuON UI” component, 
whereas with the Web 2.0 solution a HTTP request/response 
round trip to the server is required each time. There is an initial 
performance hit at the start of the process while the survey 
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definition is loaded into the “QuON UI” component but after 
that the performance benefits are clear. 

The network data exchanged between the various 
components of the solutions was also measured. The data 
shown in Fig. 5 was collected over a simulation used above 
with 100 executions over a 20 question survey. With the 
inclusion of component caching to the framework the bytes 
transferred was dramatically lower for the distributed 
component-based application when compared to the Web 2.0 
application. This is especially true for subsequent survey runs 
after all survey definitions and components are cached. The 
reduction in meta-data being transferred with each survey 
question/answer pair (i.e. with data such as HTTP headers) also 

assisted in keeping the average bytes transferred lower for the 
Web 2.0 application. 

B. Functional 

A functional comparison between the Web 2.0 solution and 
the component-based solution was performed based on the 
three identified short comings of the Web 2.0 solution, 
documented above. Building the application in a distributed 
component-based manner allowed us to address the three main 
criticisms of the legacy QuON application listed above. Offline 
client support is provided assuming the client has bootstrapped 
the QuON Client application at least once in the past. The 
caching process ensures that a copy of the “QuON UI” 
component and all the system level components are cached 
locally. The “QuON UI” component also caches the survey 
definition. Any survey result set messages are passes to the 
“component communication service” component for 
asynchronous delivery once the client comes online again. 
While the “QuON UI” component in this prototype was 
implemented using a “HTML UI”  executing component, the 
abstraction generated would easily allow a completely different 
user interface component to be developed. The loose coupling 
between the components allows the end user to easily switch 
between user interfaces. Packaging the “QuON server” as an 
application in its own right it allows the researchers to 
instantiate their own instances of the back-end, hence allowing 
for them to manage their own data storage and privacy. 

From a user experience perspective the end user is required 
to have additional software installed on their PC in order for 
the distributed component-based application to execute. 
Parallels can be drawn though to the common requirement to 
have software such as a Java runtime environments (JRE) 
installed on client PCs, and hence is not seen to be a barrier to 
entry. Bootstrapping applications is performed easily by 
allowing the user to click on an application XML link in their 
web browser, and with the correct MIME type and application 
hooks configured within the browser, have it automatically 
bootstrap the application. 

C. Software Development 

From a software development perspective we have shown 
that it is possible to re-use existing Web 2.0 components within 
the new distributed component-based framework by wrapping 
them within component interfaces. We have also shown that, 
once the runtime environment and system-level components 
are available, the developer needs only be concerned with 
defining the interfaces and building the application-specific 
components required for their application. The runtime 
environment handles the complexity of the distributed nature in 
which the components are executing. 

V. CONCLUSION 

This research has shown that it is possible to build 

solutions using our previously published distributed 

component-based framework. A sample application is 

presented and used to provide functional and experimental 

comparisons between existing web technologies and the 

approach defined by this research. While the prototype may 

not be feature complete, it does show that once the base 

 
 

Fig. 3. Performance - startup. 

 

 

 
 

Fig. 4. Performance – 20 questions. 

 

 
 

Fig. 5. Network data – 20 questions. 
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environment is available the developer can build an 

application without needing to be concerned with the 

intricacies of inter-component distributed communication, on 

a massively distributed scale. A suitably advanced set of 

system-level components would allow for an end user to 

easily distribute their instantiated components over a set of 

hardware available to them within their namespace. The 

decision on where the components are instantiated could 

either be manual, or automated. Complexities presented by 

such manual choices are discussed in our previous work [10]. 
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