
IT in Industry, vol. 5, 2017  Published online 7-Apr-2017 

 

 

Copyright  ISSN (Print): 2204-0595 

© Badarinza, Sterca, and Ionescu 2017 24 ISSN (Online): 2203-1731 

 

Syntactic Indexes for Text Retrieval 
 

Ioan Badarinza, Adrian Ioan Sterca, Maria Ionescu 

Faculty of Mathematics and Computer Science 

Babes-Bolyai University 

Cluj- Napoca, Romania 

ionutb@cs.ubbcluj.ro, forest@cs.ubbcluj.ro, maria.ionescu.or@gmail.com 

 

 
Abstract—In this paper, we present three techniques for 

incorporating syntactic metadata in a textual retrieval system. 

The first technique involves just a syntactic analysis of the query 

and it generates a different weight for each term of the query, 

depending on its grammar category in the query phrase. These 

weights will be used for each term in the retrieval process. The 

second technique involves a storage optimization of the system's 

inverted index that is the inverse index will store only terms that 

are subjects or predicates in the document they appear in. 

Finally, the third technique builds a full syntactic index, meaning 

that for each term in the term collection, the inverse index stores 

besides the term-frequency and the inverse-document-frequency, 

also the grammar category of the term for each of its occurrences 

in a document. 

Keywords— textual search; syntactic metadata; query term; 

natural language processing 

I.  INTRODUCTION 

Information retrieval (IR) is the process of finding material, 
usually with unstructured content, that has a relevant meaning 
for the information need, from within big collections of 
documents. There are many types of information retrieval, 
taking into consideration its broad meaning. We can classify 
them into three main categories [1], according to the scale at 
which they operate. In the first category, web searching, the 
system must be capable of satisfying the information need over 
a collection of billions of documents. The second category, 
personal information retrieval, refers to operating systems 
search, text classification done by email programs (for example 
a spam filter) or other types of IR in a collection of personal 
data. In the last category, enterprise, institutional and domain-
specific search, the information need is related to the 
development of the business process. Each information 
retrieval system is composed of two parts: the indexer and the 
ranking algorithm. The indexer (or crawler) is responsible for 
scanning the collection in order to build an inverted index of 
terms. The most complex crawlers are used in web search 
where the content of the collection grows exponentially and 
also changes over time. When a query is performed, the 
inverted index will be used to get the set of documents which 
best satisfy the information need. In order to do this and also to 
sort (rank) the resulted documents, a ranking algorithm is 
applied.  

In order to construct the index, the crawler starts with one 
or more initial URLs from a seed set and fetch the web page at 
that URL. The content is passed to a text indexer and the 

extracted links are added to an URL frontier which stores 
URLs of pages to be crawled. This process can be interpreted 
as traversing the web graph [2] - a graph where each page is a 
node and a hyperlink from one page to another is an edge from 
the corresponding node to the other. 

For each web page in turn, the crawler obtains relevant text 
(eliminate HTML tags and scripts), performs tokenization to 
obtain the set of words/tokens, eliminates stop words (most 
frequent words which have very little relevance), normalizes 
the tokens and then applies stemming and lemmatization to 
obtain the root word. 

The purpose of the ranking algorithm is to retrieve from the 
collection of documents the most relevant ones in response to a 
query. This is done by computing, for each matching 
document, a score which should reflect the relevance of that 
document with respect to the given query. Then, the documents 
are sorted descending according to the computed score, and 
only a subset of them is returned as a result set. 

The rest of the paper is structured as follows. Section II 
outlines related work. The main contribution of the paper is 
described in Section III, where we first present the components 
of our information retrieval system, the crawler and the ranking 
algorithm, followed by the three techniques for building a 
syntactic index. Also in this section, an experimental 
evaluation of these techniques is performed. The paper ends 
with conclusions and future work ideas in section IV. 

II. SYNTACTIC INDEXES IN IR RELATED WORK 

Traditional IR systems do not use sophisticated Natural 
Language Processing (NLP) techniques, they only perform 
tokenization, stemming and lemmatization on the indexed text. 
They do not attempt, in the crawling phase, to find a syntactic 
structure in the natural language text, because this is time-
consuming. They just extract terms from tokens, without any 
inter-relation between them. Nevertheless, IR systems could 
improve their search result by employing simple or full-fledged 
syntactic indexes. In this direction, the main idea is to capture 
term dependencies for representing the meaning of documents 
and to improve the efficiency of a searching system. The 
linguistic analyzing should be done in the indexing phase, by 
an automatic indexer which parses the content of documents 
and memorizes information about the term frequencies and also 
about the syntactic relations between terms, which should be 
provided by a syntactic parser. The linguistic inter-
relationships that are established between terms can have 



IT in Industry, vol. 5, 2017  Published online 7-Apr-2017 

 

 

Copyright  ISSN (Print): 2204-0595 

© Badarinza, Sterca, and Ionescu 2017 25 ISSN (Online): 2203-1731 

 

different forms and definitions, depending on the parser, but 
the idea is to use these relationships in order to determine the 
relevance of terms inside a phrase and moreover, inside the 
document. Then the ranking algorithm should use the new 
information that the index contains and adopt new weighting 
schemes that take into account this linguistic information. The 
new methods of scoring can use syntactic information extracted 
from the syntactic index as well as syntactic information about 
the query terms if the query is represented as a phrase. 

Reference [3] uses a linguistic rule-based dependency 
parser to add different annotations for the words in a document 
and index these words along with these annotations. These 
annotations will carry information about the linguistic features 
of the individual words from the document (e.g. noun, singular, 
verb etc.). 

Another way of using NLP (Natural Language Processing) 
in IR systems is the one described in [4] where the authors try 
to use corpus statistics and linguistic heuristics in order to 
extract meaningful sub-compounds from complex noun 
phrases. Using these sub-compounds instead of the whole noun 
phrases as indexing terms will try to solve the phrase 
normalization problem encountered in phrase-based IR 
systems. They also represent the improved values obtained 
from the precision and recall measurements. 

Since the use of single words as keywords in IR systems is 
not accurate enough to represent the documents, a lot of focus 
is shown in NLP for extracting different semantic information 
from documents. Reference [5] describes how to use complex 
terms, more precisely noun phrases, to represent a document 
and how these noun phrases are extracted using linguistic 
analysis and syntactic patterns. These noun phrases will allow 
integrating dependencies between words, dependencies that do 
not exist in the “bag of words” paradigm. This method is 
performed in two steps: the first one, similar to what is done in 
the first method, requires a linguistic analyzer with a tagger 
which generates a tagged collection (a tag corresponds to the 
syntactic category of a word: noun, verb, adjective) and the 
second step is to use the tagged collection to extract the so-
called ‘noun phrases’, which are complex terms extracted from 
the phrase 

Also, there are lots of Statistical Language Models (LM) 
that have been used in many natural language processing tasks 
including speech recognition and machine translation [6, 7]. 
Recently language models are explored as a framework for 
information retrieval [8, 9, 10]. The basic idea is to view each 
document as if it has its own language model. 

III. SYNTACTIC INDEXES FOR TEXTUAL RETRIEVAL 

Our information retrieval system, which aims to construct 
and use a syntactic index, has two components: SynCrawler, a 
parallel syntactic crawler for the web, and SynSearch which 
implements the ranking algorithms and retrieval functions. 
Both components are implemented in Java. The crawler starts a 
new thread for each new web document that needs to be 
indexed, traversing the web graph in a breadth-first search. To 
obtain the syntactic metadata that is used in the creation of the 
index, it uses the Stanford Parser [11]. 

The Stanford Parser is a program that works out the 
grammatical structure of sentences, for instance, which groups 
of words go together (as "phrases") and which words are the 
subject or object of a verb. It can be used as a lexicalized 
probabilistic parser with separate probabilistic context-free 
grammar (PCFG) phrase structure and lexical dependency 
experts, or as an un-lexicalized stochastic context-free 
grammar parser. The parser provides Stanford Dependencies 
output as well as phrase structure trees. For example, for the 
phrase ‘My dog also likes eating sausage.’ it provides a typed 
dependency representation, which we will use in our crawler: 

 poss(dog-2, My-1) 

 nsubj(likes-4, dog-2) 

 advmod(likes-4, also-3) 

 root(ROOT-0, likes-4) 

 xcomp(likes-4, eating-5) 

 dobj(eating-5, sausage-6) 

In the example above nsubj is a typed dependency between 
subject and predicate. 

The crawling thread divides the raw text into phrases and 
then analyses each phrase with the Stanford Parser in order to 
obtain the dependencies list. Then it uses the information 
provided by the types of dependencies that exist between 
words to identify the subjects and predicates of each phrase. 
We will then use the syntactic information to enrich the 
information of a posting (corresponding to a term appearing in 
a document) from the postings list. The crawling algorithm is 
shown in Fig. 1. 

The ranking algorithm, shown in Fig. 2, has the role in 
finding the top ten most relevant documents, having an array of 
query terms as input. The weighting scheme used starts from 
the following formula [12], which computes the rank of a 
document relative to a query: 

 𝑆𝑐𝑜𝑟𝑒(𝑄, 𝑑) = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑞, 𝑑)𝑞∈𝑄  

where Q = (q1, q2, …, qn) is the array of query terms, d is the 
document, for which we compute the rank, and weight(q, d) is 
the weight of the query term q inside document d. 

In the following 3 subsections we present three methods 
(weighting schemes) for incorporating lexical-syntactical 
analysis into an IR system for an increased search efficiency. 
All three methods are based on the following hypothesis: A 
document in which a term occurs as subject or predicate is 
more relevant than a document in which the term occurs as 
other syntactical categories. 

A. Method 1: Syntactic Analysis of the Query Phrases 

The main idea is to use the syntactic parser to analyze the 
query and use this syntactic metadata in weighting the query 
terms. But, to be able to do this, the user must provide the 
query in the form of a phrase. This cannot be applied when the 
user enters queries containing just keywords. 



IT in Industry, vol. 5, 2017  Published online 7-Apr-2017 

 

 

Copyright  ISSN (Print): 2204-0595 

© Badarinza, Sterca, and Ionescu 2017 26 ISSN (Online): 2203-1731 

 

 

Fig. 1. The crawler algorithm. 

 

Fig. 2. The ranking algorithm. 

Let us consider the following example: “Where does silk 
come from?” 

We syntactically analyze the query phrase in order to 
determine the subject and the predicate of the query. According 
to the Stanford parser typed dependencies list, we have a 
subject – predicate relationship between the words ‘silk’ and 
‘come’: nsubj(come-4, silk-3). 

The idea is to consider the words which appear as subject 
or predicate in the query phrase more relevant to the 
information need and to increase the weights of these terms 
when computing the score of a document relative to the query 
using the tf-idf weighting scheme. In the above example, the 
words ‘silk’ and ‘come’ are obviously more relevant than the 
words ‘does’ or ‘from’. The following heuristic rules are 
applied: 

 artificially increase the weight (idf) of the subject term 
by 20% * (maxIDF – minIDF), where maxIDF = the 
maximum idf of a term from the vocabulary, and 
minIDF = the minimum idf of a term. 

 artificially increase the weight (idf) of the predicate 
term by 10% * (maxIDF – minIDF). 

Method 1 is a proposal and its efficiency will be evaluated 
as part of future work. 

B. Method 2: Reducing the Size of the Inverted Index 

This method differs from the other ones in the way the 
inverted index is constructed. If we start with the assumption 
that the terms which appear as subjects or predicates inside 
phrases from documents are more relevant to the information 
need, then we can consider the option of indexing only those 
terms. In this way, if the terms which have a small grammatical 
relevance are not saved to the index, its size is significantly 
reduced, permitting us to index a bigger collection of web 
pages with the same storage capacity. This technique can be 
especially useful for small documents collections like blogs 
and forums which are very subject-specific and thus a 
text/blog/forum can be identified by a small number of 
keywords. 

To evaluate the efficiency of this method, we measured the 
size of a normal inverted index and of an index containing only 
subjects and predicates (called hereafter syntactic reduced 
index) for the same collection of documents. We constructed 
both indexes from Wikipedia web pages, starting with the 
URL: http://en.wikipedia.org/wiki/The_Hunger_Games. Using 
different depth levels for crawling, we measured the following 
dimensions: the size of the relational database representing the 
index (in KB), the number of indexed documents or the 
number of terms in the vocabulary. In Figure 3, we illustrate 
the dimensions of the relational database (in KB) for both types 
of indexes which were constructed with depth levels 2, 4 and 5. 
Figure 4 shows a similar graph presenting the number of terms 
which are stored in both indexes. We can see in both figures, 
that indexing only terms with a more important syntactical 
function (e.g. subject and predicates). Also, the bigger the 
depth level, the bigger the difference between the sizes of a 
normal index and a syntactic reduced index. 

C. Method 3: Full-Fledged Syntactic Index 

The last approach uses the syntactical metadata memorized 
by the index in the ranking phase of the search process, i.e. 
building a full-fledged syntactic index. The data structure of 
the index as constructed by SynCrawler is:  

 Document: documentID, URL 

 Term: termID, value, idf 

 Posting [for each (term, doc) pair]: termID, docID, tf, 
subjectFrequency, predicateFrequency 

We used this syntactic information (subjectFrequency and 
predicateFrequency – representing the number of times a term 
appears as subject/predicate inside a document) to improve the 
traditional tf-idf weighting scheme as follows. The score of 
document d for a query Q is computed the classic way using 
the same (1) above. The weight of a document d with respect to 
a query term q is: 

 𝑤𝑒𝑖𝑔ℎ𝑡(𝑞, 𝑑) = [𝑡𝑓(𝑞, 𝑑)] ∗ [𝑖𝑑𝑓(𝑞) + 𝑤𝑠(𝑞, 𝑑)] 

where 𝑤𝑠(𝑞, 𝑑) is the syntactic weight and is defined by: 



 

 



IT in Industry, vol. 5, 2017  Published online 7-Apr-2017 

 

 

Copyright  ISSN (Print): 2204-0595 

© Badarinza, Sterca, and Ionescu 2017 27 ISSN (Online): 2203-1731 

 

 

Fig. 3. Number of saved terms in a normal index (labeled ‘NoOfTerms1’) 
and in a syntactic reduced index (labeled ‘NoOfTerms2’). 

 

Fig. 4. Relational database size measured for a normal index (labeled 

‘DBSize1’) and for a syntactic reduced index (labeled ‘DBSize2’). 

 

Fig. 5. Rank measurements for one term query: ‘photography’. 

 𝑤𝑠(𝑞, 𝑑) =

{
 
 

 
 

20%× 𝑖𝑑𝑓(𝑞), if at least 25% of the 
 occurrences of the term 𝑞 inside

 document 𝑑 are as subject or predicate;  

0, otherwise; }
 
 

 
 

 

To evaluate this method, we used a syntactic index 
constructed from Wikipedia web pages, starting with the same 
initial URL as used for method 2: 
http://en.wikipedia.org/wiki/The_Hunger_Games with a depth 
level of 5. We considered 3 types of queries: one-word queries, 
two-words queries, and three-words queries. We retrieved the 
top 10 documents resulted for each query, by using both tf-idf 
weighting scheme and the syntactic heuristic formula described 
above. The results are shown below. 

In Fig. 5 and 6, we show the normal rank and syntactic rank 
of the retrieved documents for the query term “photography”. 
Fig. 7 and 8 depict the normal rank and syntactic rank for a 
two-words query: “director role” and Fig. 9 and 10 depict the 
same measurement for the three-words query: “drama fight 
aspiration”. We can see in these figures that the syntactic 
ranking algorithm alters the ranking of some retrieved 
documents, especially the rankings of the last documents from 
the top 10 retrieved documents and this effect is more 
pronounced when the query phrase contains more than one 
word. 

 

Fig. 6. Documents/ranks chart for one term query: ‘photography’. 

 

Fig. 7. Rank measurements for query: ‘director role’. 

 

 

 

 

 



IT in Industry, vol. 5, 2017  Published online 7-Apr-2017 

 

 

Copyright  ISSN (Print): 2204-0595 

© Badarinza, Sterca, and Ionescu 2017 28 ISSN (Online): 2203-1731 

 

 

Fig. 8. Documents/ranks chart for query: ‘director role’. 

 

Fig. 9. Rank measurements for query: ‘drama fight aspiration’. 

 

Fig. 10. Documents/ranks chart for query: ‘drama fight aspiration’. 

We can see in these figures that the syntactic index does not 
return totally different results than a normal tf-idf index, so the 

returned documents are relevant with respect to the query 
(considering that a normal tf-idf index returns relevant results), 
but it also alters the ranking of the returned results and 
sometimes it adds new documents to the list of the top 10 
documents, depending on the syntactic category of the query 
terms in that specific document. 

IV. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented three methods of using syntactic 
categorization to get more relevant results for a web search. 
The first method does a syntactic analysis of the query phrase 
and increases the weight of the query terms which have a more 
important grammatical category inside the phrase. The second 
one aims to reduce the dimension of the inverted index by 
indexing not all the words which appear on a web page, but 
only the ones with the most important syntactic categories 
(subjects and predicates). And the last method illustrates a way 
of using the extra information offered by the syntactic index in 
a ranking/scoring scheme. We also presented experimental 
evaluations of the last two methods that show the expected 
benefits of using them.  

As future work, we intend to test the first method, syntactic 
analysis of the query phrase, using both heuristic rules in order 
to assess its practical utility. We also intend to evaluate our 
methods on larger collections of crawled documents. 

REFERENCES 

[1] D.C. Manning, P. Raghavan, and H. Schütze, An Introduction to 
Information Retrieval．Cambridge, England, Cambridge University 
Press, 2009. 

[2] C. Stefano, Web Information Retrieval．Berlin，Springer，2013. 

[3] T. Lahtinen. Automatic Indexing: An Approach Using an Index Term 
Corpus and Combining Linguistic and Statistical Methods, PhD thesis,  
University of Helsinki, 2000. 

[4] D.A. Evans and C. Zhai, “Noun-phrase analysis in unrestricted text for 
information retrieval,” in Proceedings of the 34th Annual Meeting of the 
Association for Computational Linguistics, June 1996, pp. 17–24. 

[5] C.A. Bechikh and H. Haddad, “A quality study of noun phrases as 
document keywords for information retrieval,” International Conference 
on Control, Engineering and Information Technology, 2013. 

[6] F. Jelinek. Statistical Methods for Speech Recognition. The MIT Press, 
Cambridge, Massachusetts, 1998. 

[7] P. F. Brown, J. Cocke, S. D. Pietra, V. J. D. Pietra, F. Jelinek, J. D. 
Lafferty, R. L. Mercer, and P. S. Roossin, “A statistical approach to 
machine translation,” Computational Linguistics, vol. 16, no. 2, pp. 79–
85, 1990. 

[8] A. Berger and J. D. Lafferty, “Information retrieval as statistical 
translation,” in Proceedings of SIGIR’99, 1999, pp. 222–229. 

[9] D. Hiemstra, “A linguistically motivated probabilistic model of 
information retrieval,” in European Conference on Digital Libraries, 
1988, pp. 569–584. 

[10] J. Lafferty and C. Zhai, “Document language models, query models, and 
risk minimization for information retrieval,” in Proceedings of 
SIGIR’01, 2001, pp. 111–119. 

[11] The Stanford Parser, http://nlp.stanford.edu/software/lex-parser.shtml. 

[12] A. D. Grossman and O. Frieder. Information Retrieval: Algorithms and 
Heuristics, 2nd ed., Chicago: Springer，2004. 

 

 

 

 


	I.  Introduction
	II. Syntactic Indexes in IR Related Work
	III. Syntactic Indexes For Textual Retrieval
	A. Method 1: Syntactic Analysis of the Query Phrases
	B. Method 2: Reducing the Size of the Inverted Index
	C. Method 3: Full-Fledged Syntactic Index

	IV. Conclusions And Future Work
	References


