
IT in Industry, Vol. 9, No.3, 2021 Published Online 16-April-2021

CREATING AND IMPLEMENTING A SMART SPEAKER

1
sanskar Jethi,

2
avinash Kumar Choudhary,

3
yash Gupta,

4
abhishek Chaudhary

1,2,3,4
Department of Electrical Engineering, Delhi Technological University, Bawana Road, Delhi, India.

1
sansyrox@gmail.com,

2
avinash.ee61@gmail.com,

3
yash04g@gmail.com,

4
abhishek@dtu.ac.in

Abstract: We have seen significant advancements in

Artificial Intelligence and Machine Learning in the 21st

century. It has enabled a new technology where we can

have a human-like conversation with the machines. The

most significant use of this speech recognition and

contextual understanding technology exists in the form of a

Smart Speaker. We have a wide variety of Smart Speaker

products available to us. This paper aims to decode its

creation and explain the technology that makes these

Speakers, "Smart."

Index Terms: AI, CNN, Smart Speaker, RNN, IOT,

Privacy, Finite State Machine, Raspberry Pi

1. Introduction
The progressions in semiconductor innovation have decreased

measurements and cost while improving the exhibition and

limit of chipsets. Moreover, advancement in the AI structures

and libraries carries prospects to oblige more AI at the asset

compelled edge of purchaser IoT devices. These progressions

made it feasible for buyer electronic devices, for example,

smart speakers to be made in little structure factors, yet

equipped for running unique calculations to catch measures

and comprehend voice orders. Such devices are incredibly

affecting our everyday life. Sensors are these days an integral

part of our environment which provides nonstop information

streams to construct shrewd applications. A model could be a

smart home scenario with numerous interconnected devices. In

a smart home scenario, multiple smart devices (for example,

smart security cameras, video doorbells, smart attachments,

smart carbon monoxide screens, smart entryway bolts, and

alarms, and so on) are interlinked and work in a joint effort

with one another to serve a shared objective. Smart speakers

are among such intelligent devices that are by and large

broadly received by regular clients and turning into a

fundamental piece of smart homes.

Fig 1. Kasper Smart Speaker

To decipher these technologies' internal working and gain a

better insight into these devices, we have tried to create our

smart speaker. We call it Kasper.AI.
We are using a raspberry pi as our primary computing unit

with a reSpeaker 2 mic array and a speaker module for audio

i/o. All the computational and file processing work will be

done on-board on the raspberry pi. All components used are

targeted to be cross-platform and are not too generic for a

board or hardware set. We have implemented the Smart

Assistant client through a modified finite state machine

architecture. The state machine will be started on hot word

detection and all the states will be covered as the subsequent

events occur. The brain/logic of the Smart Speaker will be

aided through Recurrent Neural Networks, REST API

architecture, and crowdsourced datasets to generate and serve

intelligent responses.
Inbuilt within our smart speakers can understand voice-based

commands and control complex integrated systems of a smart

home. Users start interacting with a regular smart speaker by

waking up the Kasper voice assistant by calling out the

“Kasper” wake-word, followed by regular dialogues-based

interaction. Currently, developers have implemented AI

algorithms that focus on improving the performance of

conversational AI systems. This article describes the design

and development of state-of-the art, Linux-based modern

smart speaker prototype. The smart speaker discussed in this

paper is constructed using off-the-shelf hardware components

(Raspberry Pi, ReSpeaker v2, Raspberry Pi camera, regular

speaker). In this work, to provide a seamless, full-duplex

interaction, a microphone array with an on-board chip hosting

DSP-based speech algorithms was selected and used to

capture, process, and provide a noise suppressed voice feed.

As a result, our proof of concept prototype demonstrates a rich

354

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.3, 2021

user experience to interact with smart speakers by improving

voice interaction with the device. Recent relevant work is

done by authors from. We have used the same ReSpeaker v2

microphone-array to provide advanced voice interaction

capability for their microphone array and voice algorithm-

based smart hearing aid prototype.

2. Methodologies A.

Hardware Components
●Raspberry Pi
●ReSpeaker 2-mics Hat / USB mic / USB sound card
● SD card
● speaker
● 3.5mm Aux cable/ JST PH2.0 connector
A variety of alternatives were chosen before finalising these

components.
Alternatives Considered:
The Raspberry Pi has a couple of contenders, albeit the

establishment urges individuals to clone its thought, so rival

probably won't be the correct word. They incorporate

BeagleBoard and PandaBoard (which are both the

organizations' names and their essential gadgets). Both are

charitable associations yet with somewhat unexpected

objectives in comparison to the Raspberry Pi Foundation.

BeagleBoard is intended for grown-up equipment hobbyists,

and PandaBoard expects to make a versatile programming

stage accessible at a sensible cost.

Like Raspberry Pi, they're both exposed boards with ARM

processors and are HD video competent. In any case,

BeagleBoards and PandaBoards have more connectors and

association headers (pieces of the board that can be utilized by

fastening extra equipment) than the Raspberry Pi, and the two

gadgets are somewhat bigger. Coming up next aren't thorough

arrangements of segments, yet a few highlights contrast from

the Pi. For its planned instructive purposes, the Raspberry Pi

has two significant benefits over the others. To start with, it is

considered to be a finished working PC. You basically need to

embed a SD card containing the OS, interface the peripherals

and force, and it's all set. BeagleBoards and PandaBoards

expect hookup to a host PC for introductory arrangement. In

spite of the fact that they have comparable handling abilities,

they take somewhat more expertise to get them completely

utilitarian.
Table 1. Comparison between BeagleBoard and PandaBoard

BeagleBoardandBeagl PandaBoard and

eBoard-xM PandaBoard ES

Cortex A8-based Dual-core ARM Cortex

processor madeby A9 MPCore processor,

Texas Instruments, also manufactured by

running from 600 MHz Texas Instruments,

to 720 MHz on the running at 1GHz on the

BeagleBoard PandaBoard and 1.2

Published Online 16-April-2021

(depending upon GHz on the ES

version) and 1 GHz on

the xM.

128 MB RAM on the 1 GB RAM
original BeagleBoard,

but 256 MB and 512

MB RAM on the newer

boards, respectively.

DVI-D monitor DVI-D monitor

connector connector

S-video connector LCD expansion header

Audio in and out (not Audio in and out

just audio out) One USB on-the-go

One USB port on port and two standard

BeagleBoard and four USB ports

USB ports on the xM WiFi and Bluetooth

USB and DC power connectivity

No RCA or HDMI USB and DC power

connector No RCA connector

Second, the other devices are much more expensive than the

Raspberry Pi. For example, in April 2012, the pricing was

$125 to $149 for the two main BeagleBoard models, and $174

to $182 each for the two PandaBoard models. These prices are

a far cry from the $25 and $35 base prices of the Raspberry Pi.

Given its functionality and price, the Raspberry Pi seemed

better poised for us.
B. Smart Speaker Architecture
KASPER provides access to KASPER on Linux distributions

on desktop as well as hardware devices like Raspberry Pi. It is

a headless client that can be used to interact with KASPER via

voice only. As more and more features like multiple hotword

Fig 2. The finite State Machine

detection support and wake button support were added to

KASPER Linux, the code became complex to understand and

manage. A system was needed to model the app after. The

Finite State Machine was the perfect approach for such a

system.
The Wikipedia meaning of a State Machine is "It is a

theoretical machine that can be in precisely one of a finite

355

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.3, 2021

number of states at some random time. The FSM can change

starting with one state then onto the next because of some

outside information sources; the change starting with one state

then onto the next is known as a progress."

This implies that in the event that you can demonstrate your

application into a finite number of states, you may consider

utilizing the State Machine usage.
State Machine execution has the accompanying focal points:
Better authority over the working of the application.
Improved Error taking care of by making an Error State to

deal with mistakes.

States work freely which serves to modularize code in a

superior structure.

Regardless, we announce a theoretical State class. This class

proclaims all the basic properties of a state and change

technique.

We declared the on_enter() and on_exit() conceptual method.

These methods are executed on entering and exiting a state

separately. The errand assigned for the state can be acted in

the on_enter() method and it can let loose assets or quit tuning

in to callbacks in the on_exit() method. The transition method

is to transition starting with one state then onto the next. In a

state machine, a state can transition to one of the permitted

states only. Hence, we check if the transition is permitted or

not prior to continuing it. The on_enter() and transition()

methods additionally acknowledge a payload contention. This

can be utilized to move some information to the state from the

past state. We likewise added the components property to the

State. Components store the common components that can be

utilized across all the State and should have been initialized

only once. We make a component class pronouncing all the

components that should have been utilized by states.
● Idle State: App is listening for Hotword or Wake
Button.
● Recognizing State: App actively records audio from

Microphone and performs Speech Recognition.

● Busy State: KASPER API is called for the response

of the query and the reply is spoken.
● Error State: Upon any error in the above state,

control transfers to Error State. This state needs to handle the

speak the correct error message and then move the machine to

Idle State.

Each state can be implemented by inheriting the base State

class and implementing the on_enter() and on_exit() methods

to implement the correct behavior.

We also declare a KASPER State Machine class to store the

information about current state and declare the valid

transitions for all the states.

We also set Idle State as the current State of the System. In

this way, the State Machine approach is implemented in

KASPER Linux.

Published Online 16-April-2021

C. Modified FSM Architecture
During the underlying phases of KASPER: As the code base

developed, it was getting hard to maintain code, so we selected

to execute a Finite State Architecture in our repo. However, as

there were new highlights actualised in the codebase, we

understood that we were unable to deal with more than each

inquiry in turn which limited a great deal of highlights. eg. The

smart speaker was changed over to a basic Bluetooth speaker

since no reaction with respect to playing/stopping were

acknowledged.

To settle this issue, we made a slight alteration in the

architecture.

Figure 3. The Modified finite State Machine

1) Adding a Second Hotword Recognition Class
To enable KASPER to handle the simultaneous question, The

State machine should be set off while KASPER is giving out

the principal reaction and to trigger the State Machine, we

should have hotword recognition while KASPER is talking the

response to the past inquiry. Thus, a hotword recognition

motor is presently started each time the State Machine enters

the bustling state.
2) Modifying the State Machine Architecture
After declaring pronouncing a second hotword recognition

engine , we altered how the changes occur between the States

of the KASPER State Machine.

Subsequently, the callback that was set off was passed from

the busy state.

When the hotword is distinguished ,the state machine makes

advances to the Recognition State while stopping the current

Music and resumes the Music after the subsequent question

has been finished.

This is the manner by which KASPER measures different

questions at the same time while still keeping up finite state

architecture.
D. Speech to text recognition
Speech Recognition is basically making the computer

understand what we speak. In general, a computer such that it

can hear us and respond back to us and by "understand" we

mean it would convert the speech into appropriate text. Thus

speech recognition is also called the Speech to Text conversion

process. It consists of a microphone for humans to speak,

recognition of speech software, and a computer to

356

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.3, 2021

perform tasks. The basic recognition of the speech system is

shown.

Figure 4. Speech Processing model of Kasper AI

1) Speech to text engine
Speech to text engines is used to feed sound waves into the

computer for converting them into text. As sound waves are

continuous (analog) signals the first thing is to do a sampling

of the signal using the Nyquist theorem. This sampled signal is

fed directly to our neural network but pre-processing of the

signal is done in order to get better results and accurate

predictions of spoken words. In pre-processing, we grouped

large sampled signals into 20-millisecond small chunks.

Preprocessed data which is in digital format is now fed to our

Recurrent Neural Network (RNN) which is our main speech

recognition model and it is based on many to many

architecture which is used for prediction.

2) Sampling and pre-processing of speech
Sampling and pre-processing of data is an important step while

designing STT Engine. This step decides the performance and

time consumed by the engine. Sound waves are as we know

one-dimensional. At every point in time, they have a single

value based on the magnitude of the wave. To turn this sound

wave into numbers just record the magnitude of the wave at

equally-spaced points. This is called Sampling. This sampled

data is directly fed into our recurrent neural network but for

ease and better results data is preprocessed before applying to

the network. Pre-processing is breaking the sampled data into

smaller groups of data. Generally grouping the wave within

some interval of time mostly for 20-25 milliseconds. Sampling

and preprocessing together can be termed as the conversion of

sound into numbers(bits).
3) Recurrent Neural Network
Now audio is given at input and is easy to process, it will be

fed to our deep neural network. After feeding these small

audio chunks of 20ms to our network it will figure out a letter

that matches the spoken sound. RNN is a network that has a

memory that decides future predictions. This is because as it

Published Online 16-April-2021

predicts a letter it will affect the likelihood of the next letter

which it will predict. Consider an example, if we have said

"MUM" so far, then it obviously will predict "BAI" next to

complete the word "MUMBAI". There is less probability that

one will say something which is completely out of context

such as "ABC" after saying the word "MUM". Hence having a

memory of previous predictions boosts our network to make

more accurate predictions going forward. RNNs use the idea

of sequential information. RNN is a neural network that has a

memory that influences future predictions sequential

information which is stored into the memory of RNNs and is

used for predictions. The idea to use RNN instead of a

traditional neural network is in traditional neural networks, it

is assumed that every input & output doesn't depend on each

other. Hence using a traditional neural network is a bad idea in

speech processing. Prediction of any word in a sentence

requires the information about the word which came before i.e.

past word which is processed. Having a memory is one of the

specialties of RNN that makes it unique from other networks.

There are various neural networks available among them the

Recurrent Neural network is used because it is more efficient

than the others for speech recognition.

4) Various Stt Engines Using RNN
There are various engines used that are based on RNN‟s which

uses python, C, java programming languages to build a

Recurrent Neural Network. We have gone through CMU

pocket-sphinx, snowboy hot word detection which uses python

language, and RNN which shows good results also if we

increase the database it will perform at it‟s best. Unlike

Google‟s STT and Amazon‟s Alexa, CMU pocket-sphinx is

an offline speech to text conversion engine provided that

training of a dataset is done online. CMU online training portal

must be given a set of words that we have to train. The training

process is the same as discussed above in training at RNN. It

uses python to build an LSTM network. Also recently

launched engine Snowboy-hot word detection works offline

but it is limited to the detection of one particular hot word.

Fig 5. Comparison of Wake Word Engines

357

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.3, 2021

3. Extracting Context
After the Speech to text engine converts the audio input into

text, the system needs to make some sense out of that. The aim

is to find the intent of the audio query using some algorithm. A

convolutional neural network (CNN, or ConvNet) falls under a

class of deep neural networks, which is most commonly used

to analyze visual imagery. Some common applications of CNN

are image classification , facial recognition , object detection

etc. Most recently, however, CNN have also found to perform

well with problems associated with NLP tasks such as

Sentence Classification, Sentiment Analysis, Text

Classification, Text Summarization, Machine Translation and

Answer Relations. Hence we decided to use CNN.
A. General architecture of a Convolutional Neural Network
A CNN is composed of "convolutional" layers and

"downsampling" or "subsampling" layers.

Pooling layers or downsampling layers are often placed after

convolutional layers in a ConvNet, mainly to reduce the

feature map dimensionality for efficiency, which in turn

improves the actual performance. Convolutional layers consist

of neurons that scan their input for patterns.
Generally, the two layers, i.e., Pooling and Convolutional

layers, are in an alternate order, but that's not a necessary

condition.

This is followed by a Multi Layer Perceptron with one or more

layers.

Fig 6. CNN Architecture

We compared a variety of algorithms to get the best results

possible:
1. Dynamic Programming based Fuzzy Approach
2. K- Nearest Neighbors Algorithm
3. Convolution Neural Networks
4. Recurrent Neural Networks
1) Fuzzy Matching:
Dynamic Programming is a mathematical procedure of

optimization using multistage decision progression. It is a

general algorithm design method for solving problems

formulated as repetitions with overlapping sub instances. In

Published Online 16-April-2021

1965 fuzzy set theory was developed by Lotfi A. Zadeh, which

has become a significant device in dealing with roughness and

imprecision in real-world problems. In 1970 Bellman applied

fuzzy set theory in decision-making problems. The technique

of solving optimization problems in dynamic programming

involving fuzzy parameters is known as fuzzy dynamic

programming. In our case, we used fuzzy DP and got an

accuracy of 43.29.
2) KNN(K Nearest Neighbors):
K-nearest neighbors (KNN) algorithm comes in the category

of supervised ML algorithm used for both classifications and

predictive regression problems. However, it is primarily used

for classification predictive problems in the industry. KNN

uses feature similarity to predict new data points values, which

means that the new data points will be assigned a value based

on how closely it matches the training set's points. In our case,

we used KNN to define a minimum accuracy above which all

the other algorithms perform. The accuracy we got with KNN

was 51.37.

3) CNN(Convolutional Neural Networks):
CNN is a deep, feed-forward artificial neural network where

connections between nodes do not form a cycle. CNN's are

generally used in computer vision; however, they've shown

promising results when applied to various NLP tasks as well.

CNN's are good at extracting local and position-invariant

features, whereas RNN's are better when classification is

determined by a long-range semantic dependency rather than

some local key-phrases. For tasks where feature detection in

the text is more important, for example, searching for angry

terms, sadness, abuses, named entities, etc. CNN's work well,

whereas for tasks where sequential modeling is more critical,

RNNs work better.

In our case, CNN had an accuracy of 78.23%.
4) RNN(Recurrent Neural Networks):
RNN comes under Neural Network category where the output

from the last step is fed back as an input to the current step. It

is a sequence of neural network blocks that are linked to each

other like a chain. This allows RNN to exhibit temporal

behavior and capture sequential data and is trained to

recognize patterns across time, making it a more 'natural'

approach when dealing with textual data since the text is

naturally sequential. However, in our case, there wasn't any

significant accuracy difference between RNN and CNN

because text classification doesn't need to use the information

stored in the sequential nature of the data. A big argument for

CNNs is that they are much faster (~5x) than RNNs in

computation time.
In our case, RNN had an accuracy of 72.71%.
How does the CNN architecture work for Sentence

Classification?
Just like images can be represented as an array of pixel values.

Similarly, text can be represented as an array of vectors where

each word is mapped to a specific vector in a vector space

358

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.3, 2021

composed of the entire vocabulary that can be processed with

the help of a CNN. When we are working with sequential data,

like text, we work with one-dimensional convolutions, though

the idea and the application stay the same. We still want to

pick up patterns in the sequence that become more complex

with each added convolutional layer. Here, we are going to

train a Convolutional Neural Network to perform sentence

classification on data that we get after converting speech to

text.

We followed the following workflow:
● We import the data and preprocess it into a desirable

format(one we can work with) using pandas.
● We use GloVe to obtain pre-trained word

embeddings for our model.

● Keras is used to train the data on a CNN architecture

and evaluate the accuracy obtained on the validation set.

Fig 7. Context Inference

C. Our Classes
Using CNN, we were able to classify sentences into 22

different classes, which are:
● Art and Beauty
● Business and Finance
● Communication
● Connected Car
● Food and Drink
● Games, Trivia, and Accessories
● Health and Fitness
● Interests
● Knowledge
● Lifestyle
● Movies and TV Shows
● Music and Audio

Published Online 16-April-2021

● News
● Novelty and Humour
● Problem Solving
● Productivity
● Shopping
● Social
● Sports
● Travel and Transportation
● Utilities
● Weather

4. Result
A privacy enabled smart speaker prototype was created. The

prototype is “smart”, makes coherent conversations and can be

customized according to the user’s requirements. A privacy

focussed smart speaker was created, giving the user the ability

to control the server and the client code.

5. Conclusion
Over 50% of the Indian population are expected to own a

regular smart speaker by 2023, and it's predicted that smart

speaker ownership would overtake tablets globally by 2022.

This paper provides an overview of the technology and tools

required to build a privacy first custom smart speaker.
Kasper.AI is able to provide a custom skills system trained

with CNNs to allow the speaker to be “smart” and make

coherent conversations

References
[1] ERIC - EJ870076 - Education or Incarceration:

Zero https://eric.ed.gov/?id=EJ870076
[2] Smart speaker design and implementation with

biometric http://ceur-ws.org/Vol-
2563/aics_29.pdf

[3] Rauhut, Anna, et al. “Analysis and Evaluation of

Business Model Patterns for the Craft Sector.”
EuropeanConferenceonInnovationand
Entrepreneurship, Academic Conferences

International Limited, Sept. 2020, p. 521.
[4] Tinkercart|8051MICROCONTROLLER

HISTORY. http://tinkercart.com/new/8051-

microcontroller-history/

359

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

