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Abstract—The goal of this research is to explore effects of 

dimensionality reduction and feature selection on the problem of 

script identification from images of printed documents. The k-

adjacent segment is ideal for this use due to its ability to capture 

visual patterns. We have used principle component analysis to 

reduce the size of our feature matrix to a handier size that can be 

trained easily, and experimented by including varying 

combinations of dimensions of the super feature set. A modular 

approach in neural network was used to classify 7 languages – 

Arabic, Chinese, English, Japanese, Tamil, Thai and Korean. 
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I.  INTRODUCTION 

The application of a language identification system is 
diverse. Almost all OCR, document indexing and classifier 
applications such as Google books, and all translation systems 
require a priori knowledge of the language used in the 
document. Printed documents offer a structured layout and 
intra-class repeatability in pattern, but they also pose the 
problem of repeated patterns in different languages which 
makes it difficult to identify discriminating patterns for inter-
class classification. Much work has been done in the field of 
document image classification based on language. These 
approaches exploit different features found in distinct 
languages. Shwarz et al [1] used character-based features and 
cluster analysis to distinguish two languages – English and 
Arabic. Spitz [2] used topline, baseline, and different zones in a 
line to extract features. Such techniques require a spatial 
structure and fail to perform when presented with different 
spatial arrangements of texts. It is reported in the mentioned 
work that their system has performed less accurately in such 
conditions. Boles et al [3] used features such as bounding box 

of characters, text line curvature and line skew. Such approach 
requires extensive image processing of character segmentation. 

It is observed that characters are not always well 
segmented, and even the best character segmentation technique 
poses the possibility of fragmentation of characters. The 
approach by Boles et al used connected component filtering to 
remove continuous segments of characters. This approach 
causes loss of information and segments and is inappropriate 
for use in both handwritten and printed texts as in both cases, 
such possibilities exist. All the features and techniques 
discussed above are difficult to extend to new languages. The 
features employed are hand-picked to work for a specific set of 
languages. When new languages are introduced, the same set 
of features may not work and a new set of features need to be 
derived. 

Bowers et al [4] used Gabor filters in small segments of 
text. However, this is restricted to a defined range of text 
segments, and no report of applying this technique to full 
length document image is available. Tan [5] used template 
based techniques to compute the most likely script after 
construction of templates from clusters. These techniques are 
dependent on line and character segmentation. In our work, we 
explore the possibility of a feature that is not dependent on line 
or character segmentation, but can be extended to other 
languages to capture the inherent characteristics of a language. 

II. METHODOLOGY 

A. Data Set Description 

For this work, we have used a standard dataset reported by 
Kelly et al [6]. It contains 62 images of 7 languages in total. 
Table 1 lists the languages and the number of images for each 
of them. Figure 1 shows samples from each of the seven 
languages. 
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TABLE I.  LIST OF LANGUAGES IN THE DATASET 

Language (7) No. of images (62) 

Arabic 10 

Chinese 9 

English 10 

Japanese 8 

Korean 8 

Tamil 9 

Thai 7 

 

B. Feature Extraction Using K-Adjacent Segments 

Our feature extraction process consists of two steps. The 
first step is edge detection [7] and the second step is to generate 
K-adjacent segments (K-as). This feature was first introduced 
by Fevrier et al [8]. We use 3-adjacent segments as 2-adjacent 
segments pose too much repeatability across different 
languages and 4-adjacent segments are too complex as we will 
show later in this paper. We construct a graph G( V, E ),  where 
the nodes ( V ) represent each segment found from the previous 
step, and the edges ( E ) represent adjacency. Informally, if two 
segments share a common start or end point, there exists an 
edge between the segments represented by the nodes. We use 
depth first search to extract 3 consecutive segments and form 
3-adjacent segments.  

In order to compare different K-as, we need a numerical 
descriptor [8]. At the beginning, it is important to order the K-
as segments {Si}, where i =1..k in a repeatable manner so that 
similar K-as have the same order. In the first segment, we 
select those with midpoint closest to the centroid of all 
midpoints {mi = (xi, yi)} i=1..k. In the descriptor below, this 
centermost segment is the natural choice as a reference point 
for measuring the relative location of the other segments. The 
remaining segments take up positions 2 through k and are 
ordered from left to right in according to their midpoint. Note 
that this order is stable as no two segments can have similar 
location in both x and y. 

Once the order is established, a K-as is a list P = (S1, 
S2,...,Sk ) of segments. Let ri = (ri

x
, ri

y
) be the vector going from 

the midpoint of s1 to si.  Furthermore, let θi and  li = ║si║ be the 
orientation from the K-as center and the length of si 
respectively. 

 

  

  

  

 

 

Fig. 1. Samples from the seven languages (from left to right, then top to 

bottom): Arabic, Chinese, English, Japanese, Korean, Tamil, and Thai. 

The descriptor of P is composed of 4k-2 values for k>1, 
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where the distance Nd between the two farthest midpoints is 
used as normalization factor which makes the descriptor scale-
invariant (Hence, both the K-as features and their descriptors 
are scale-invariant). 

In this part, we present a measure D(a,b) of the 
dissimilarity between two K-as P

a
 and P

b
 of the same 

complexity k, originally proposed by Fervier et la [8] as 
follows:  
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where the first term is the difference in the relative locations of 
the segments. Dθ ε [0,π] measures the difference between 
segment orientations, and the last summation accounts for the 
difference in lengths. As segment lengths are often inaccurate, 
we give higher weight to the two other terms of the comparison 
measure: in all our experiments wr = 4, wθ = 2. 

To illustrate the steps in our methodology in finer details, 
we will use a sample image of a character and generate 3-
adjacent segments from it. For better understanding, we will 
use the image of a character-like object rather than a character. 
We start the process of line fitting. Canny edge detection is 
used to detect roughly straight line segments and break the 
image structure into a combination of lines. This is 
demonstrated in the image shown in Figure 2 below. We now 
detect 3 adjacent line segments. The image contains 5 straight 
lines. From these 5 lines, we can obtain the triplets as such: {1, 
2, 3}, {1, 3, 4}, {3, 4, 5}, {2, 3, 5}, {2, 3, 4} and {1, 3, 5}. 

C. Feature Selection 

After extracting contour segments, each K-as segment is 
represented in a 10-dimensional vector. In our set of languages, 
it is natural for different languages to share the same set of K-
as features. We use principle component analysis (PCA) [9, 
10], a statistical tool, to extract discriminating features and use 
them in our classifier. PCA allows us to project high 
dimensional data to a lower dimension. The principle 
 

 

Fig. 2. A sample character and line fitting. 
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dimension is the axis on which the largest number of data 
points can be discriminated. As subsequent orders of 
dimension are included, more of the data points can be 
discriminated. In our experiment, we have found the first 3 
principal components to be the most effective. We will discuss 
this in further detail in the results section. 

We have used 300 training samples for each language. For 
7 languages, we have a feature matrix of 2100 by 10. By 
applying PCA, we reduce this matrix to 2100 by 3. 

D. Classification 

Artificial neural networks are used to classify languages. 
From our previous research work [11], we have observed that 
probabilistic neural networks train faster and fit a better model 
compared to other popular neural network models. Moreover, it 
is experimentally reported that probabilistic neural networks 
are well known to converge [12] on large training sets. 

For our simulation, we have designed our architecture with 
7 probabilistic neural networks. Given a single set of network 
parameters such as weight and bias, it is more time consuming 
and difficult to draw decision boundaries that separate 7 
different classes. We have used the modular neural network 
approach [13] motivated by the flexibility it offers to an 
individual network. Each of the networks only needs to classify 
two classes – a positive class and a negative class. Each neural 
network learns a single language. Given an input, all 7 
networks respond with a confidence value. The trained 
language of the network that responds with the highest value is 
considered to be the language of the input image. 

Features from a total of 49 images and 300 segments from 
each image are collected. This results in a feature matrix of size 
300 by 10. To represent a language in a vector of 1 by 3000 
and to train it in a neural network with other samples of the 
other languages is an arduous task. We have tackled this by 
arguing that several segments occur repetitively across 
different languages and we can reduce the redundancy in the 
features by projecting them onto a different space such that the 
most discriminating dimensions remain. We achieve this by 
using PCA. 

After applying PCA, the feature matrix for one image has 
been reduced to 300 by 3. This gives us a handier feature size 
of 1 by 900. We collect more of these feature vectors and train 
our networks for each of the languages. Ten feature samples 
from each language have been trained with a total of 70 feature 
vectors. Concretely, our set of feature training matrix is 70 by 
900. 

III. RESULT AND ANALYSIS 

At the beginning of this report, we argue that the 3-as 
features which have been generated capture the inherent pattern 
in a language. To prove this, we run experiment using different 
sizes of samples for the training phase. 

The above plot shows the trend in accuracy with varying 
number of samples used for training. The accuracy begins to 
level off after 250 samples for each language. The best 
accuracy is obtained at 400 samples for each language. 
 

 

Fig. 3. Accuracy plot against number of training samples extracted from each 
language. 

However, generating 400 samples requires exponentially 
longer time than extracting 300 features, hence we settle with 
300 features for an optimum tradeoff between accuracy and 
time. Figure 4 shows the time required for feature generation 
against number of features generated. This graph demonstrates 
the trend in time required to extract 3-adj segments from a 
document image. This trend is expected if we observe that the 
3-adj segments are generated from a graph whose size depends 
on the number of segments found in the document. We have 
experimentally observed that for 300 3-adjacent segments, a 
graph of 3500 by 3500 should be generated. This is a large 
graph and running repeated depth-first search to extract 3-
adjacent segments on this is computationally intensive. This 
task is increased in many folds for a larger number of 3-
adjacent segments such as 400 which requires a much larger 
graph to be traversed. 

A. Number of Principal Components 

When projecting using PCA, we have to select the number 
of dimension to project on. The appropriate number of choice 
is dependent on the data being projected, and can be 
determined experimentally. We have conducted several trials 
of our experiment with varying number of principle 
components. The corresponding accuracies are demonstrated in 
the plot below. 

Figure 5 shows that the classifier has consistent learning 
performance, starting from the first 3 principle components to 
the 6

th
 principle component being used. We deduct that the 4

th
, 

5
th

 and 6
th

 component do not add any significant discriminating 
feature information to the classifier and hence no drastic 
changes in accuracy are observed. Adding the 4

th
 component 

results in a very slight improvement in accuracy, but we settle  
 

 

Fig. 4. Plot for time required versus number of feature samples generated 

from a document image. 
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Fig. 5. Changes in Accuracy on Varying Number of Principle Components. 

with the 3
rd

 component in lieu of reduced computation time and 
cost. When the 7

th
 component is added, there is a drop in 

accuracy to 60.8%. Further addition of components leads to a 
consistent accuracy around 60%. We predict that adding 
further dimensions to our feature causes the classifier to be fed 
with misleading data and creates confusion for the classifier. 
The projection on the 7

th
 dimension and further contain an 

overlap of the classes which makes it difficult for the classifier 
to perform well. To confirm our prediction, we choose 
different numbers of principle components for classifying 
them. 

Figure 6 shows the obtained accuracies with different 
choices of principle components. It is established that 
components 1, 2 and 3 are the strongest in their discriminating 
power, whose performance measure is added to the plot for 
reference. We observe the accuracy by adding the 7

th
, 8 and 9

th
 

component to see the effect on the discriminating power of the 
first 3 components. The results support our prediction that the 
projection on 7

th
 component results in confusion and 

overlapping of classes for the classifier. Adding the 8
th
 and the 

9
th
 component to the first 3 principle components 

comparatively reduces the accuracy less. Using only the 7
th

, 8
th
 

and 9
th

 component results in a low accuracy of 47.9%. Since 
the 8

th
 and 9

th
 component are weaker than the first 3 

components, the effect of adding the 7
th
 component is more 

pronounced. 

B. The Confusion Matrix 

The confusion matrix of various classifiers is shown in 
Table 2 .According to this table, the largest confusion arises 
when classifying a Tamil document from a Thai document. An 
inspection of Thai and Tamil language data shows that both 
these languages are very similar visually. In some cases, it is 
difficult for humans to classify Tamil and Thai documents 
based on visual inspection. Since our feature captures visual 
information rather than character information, this confusion 
seems unavoidable. 

 

Fig. 6. Accuracy Plot Against Different Choices of Principle Components. 

TABLE II.  CONFUSION MATRIX FOR VARIOUS CLASSIFIERS. LEGENDS: 
A (ARABIC), C (CHINESE), E (ENGLISH), J (JAPANESE), K (OREAN), 

TM (TAMIL), TH (THAI). 

 A C E J K TM TH 

A 93.8 1.3 0.6 1.9 0.4 1.1 0.9 

C 1.3 77 1.1 10.6 6.4 1.7 1.9 

E 0.6 1.1 91.9 1.6 0.5 1.9 2.4 

J 0.5 10.6 0.4 78.6 7.1 1.5 1.3 

K 0.4 6.4 0.3 7.1 81.2 3.4 1.2 

TM 1.1 1.7 1.9 1.5 3.4 69.6 20.8 

TH 0.9 1.9 2.4 1.3 1.2 20.8 71.5 

 

The second most confusing classification is caused when 
classifying Chinese from Japanese documents if the Japanese 
documents consist mainly of Kanji character sets. This can be 
explained by the fact that Japan borrowed Chinese characters 
to form her own Kanji character sets which are similar to or the 
same as the Chinese characters.  

The best classification is for Arabic at 93.8%. Arabic is 
visually very unique from all other languages. This avoids 
confusion with other documents and results in a much better 
classification when compared to other languages. 

From the confusion matrix, the mean diagonal is 80.5% 
which we report as our average accuracy. 

Figure 7 shows the 10-fold validation for our system. It 
shows that the performance of our system is consistent. The 
training accuracy is higher than the testing accuracy. We 
attribute this to the nature of probabilistic neural networks, 
whose design allows them to fit a model much better during the 
training phase than compared with the testing phase. We intend 
to explore this variation in our future work. 

IV. CONCLUSION 

We have proposed the use of 3-adjacent segments for 
language classification with the use of PCA for feature 
reduction and a modular neural network design for 
classification. The results show a consistent performance at an 
average accuracy of 80.5%. The strength of our system is that it 
 

 

Fig. 7. 10-Fold Validation of the System. 
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uses a feature set which captures the visual arrangement in a 
language’s character set, rather than the character information. 
It is easy to extend the system for further languages. The 
accuracy found is for languages that share a great deal of visual 
similarity. For languages which are dissimilar to each other to a 
great extent, we have found accuracy is greater than 90%. 
There is no report of any time measure in this area of research. 
We have reported the times of our system’s training phase for a 
varying number of samples and believe that this is smaller than 
those in other reported works since our feature extraction phase 
samples a defined number of features rather than processing 
the whole document. 

This research work can be further extended and improved. 
For the samples of the seven languages we use, the sentences 
are being read from left to right. In Chinese and Japanese 
languages, modern way is being read from left to right. 
However, they can also be read from top to bottom as well as 
from right to left. More works need to be done to ensure the 
methods we use can identify those languages which can also be 
read in a non-common way as described above. 

This work can also be extended to consider time measure 
for a defined number of features as well as for processing the 
whole documents. 
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