
The D-basis Algorithm for Association Rules of
High Confidence

Oren Segal, Justin Cabot-Miller, Kira Adaricheva and J.B.Nation

Abstract—We develop a new approach for distributed computing
of the association rules of high confidence on the attributes/columns
of a binary table. It is derived from the D-basis algorithm developed
by K.Adaricheva and J.B.Nation (Theoretical Computer Science,
2017), which runs multiple times on sub-tables of a given binary
table, obtained by removing one or more rows. The sets of rules
retrieved at these runs are then aggregated. This allows us to obtain
a basis of association rules of high confidence, which can be used
for ranking all attributes of the table with respect to a given fixed
attribute. This paper focuses on some algorithmic details and the
technical implementation of the new algorithm. Results are given for
tests performed on random, synthetic and real data.

Keywords—Binary table, association rules, implications, the D-
basis algorithm, parallel computing, the relevance

I. INTRODUCTION

In data mining, the retrieval and sorting of association rules
is a research problem of considerable interest. Association
rules uncover the relationships between the attributes of a set
of objects recorded in a binary table. This, for example, can
be a transaction table, where the objects are sale transactions
and the attributes are groups of products: position (r, c) in the
table, in row r and column c, is marked by 1 if the transaction
r includes a product from group c, otherwise, it is marked by
0. An association rule X → b in the table means that the
entire set of transactions shows the tendency that whenever a
transaction includes products from all groups in set X (i.e.,
there are 1s in all columns from X), then some product in
group b will appear as well. The confidence of such a rule is
measured by the portion of transactions that include b among
all transactions that have every product from X .

In the world of transaction data, a rule X → b with
confidence of 0.1 might demonstrate that b sells together with
all products in group X .

There is an immense effort in the data mining community to
develop reliable tools for the discovery of meaningful associa-
tion rules. However, the hurdles encountered while developing
such solutions are numerous. The benchmark algorithms, such
as Apriori in Agrawal et al. [6], have time complexity that
is exponential in the size of the input table. Moreover, the
number of association rules is staggering, and thus analyzing
them requires further tools to obtain a short subset of rules

O. Segal is with the department of Computer Science, Hofstra University,
Hempstead, NY, 11549 USA e-mail: Oren.Segal@hofstra.edu

J. Cabot-Miller is CS and mathematics major, Hofstra University e-mail:
JCabotMiller1@pride.hofstra.edu

K. Adaricheva is with the department of Mathematics, Hofstra University,
Hempstead, NY, 11549 USA e-mail: Kira.Adaricheva@hofstra.edu

J.B. Nation is with the department of Mathematics, University of Hawaii,
Honolulu HI 11823 USA e-mail: JB@math.hawaii.edu

that are significant. There are no strong mathematical results
confirming a particular choice of such short subsets, and
numerous approaches to the filtering process are described
in various publications devoted to the topic. See, for exam-
ple, Kryszkiewicz [17] and Balcázar [8]. Recent approaches
include constraint-based patterns, preference learning, instant
mining and pattern space sampling, which are often interactive
methods targeting the user’s implicit preferences, see [7], [22],
[23].

One particular subset of association rules, the implications,
or rules of full confidence, merit particular attention in data
mining. They are also at the center of ongoing theoretical
research. From a practical point of view, implications are the
strongest rules available in a given table because they hold
true for any row of the table.

Some types of data present cases where the implications
uncovered in the table contain non-essential information be-
cause the support of those implications might be very low. The
support of an association rule X → b is the number of rows
where ones appear in all columns from X ∪ b. For example,
the transaction data might have only a few implications with
small sets X , whose support could be a single-digit percentage
of all transactions. Mining of transaction data tends to uncover
rules of lower confidence but relatively large support, rather
than those implications which hold everywhere.

The Apriori algorithm and the concept of generating rules
of lower confidence are relevant when considering transaction
data, but not so for medical data. The attributes of a table that
represent genetic and clinical data of patients (rows) may have
a tighter connection than relationships in transaction data, in
which case the confidence of relevant association rules could
be expected to be high and closer to 1. Implications would
serve as the imperfect representation of the laws of nature in
this data.

At the same time, every data set may contain errors, missing
entries and miscalculations. Additionally, some patients may
have extraneous conditions affecting the value in the target
column (e.g., co-morbidity with an untracked illness). Even
if only one row contains such deviations, it may prevent us
from discovering important implications that would otherwise
hold in the table. This is why extracting implications from
sub-tables that omit only a few rows may uncover important
rules.

In this paper, we expand the approach developed in
Adaricheva et al [2] for the extraction of implications and
ranking of attributes with respect to a target attribute.

Our goal is not to uncover particular rules and rank them
with respect to some measurement. Rather, we want to gener-

IT in Industry, vol. 6, no.3, 2018 Published online 11-Sep-2018

Copyright © Oren, Justin Cabot-Miller, ISSN (Print): 2204-0595
ISSN (Online): 2203-1731Kira, J.B.Nation 2018

11

ate a basis Σ of association rules which satisfactorily describes
dependencies among attributes. We could then use Σ to rank
the importance of attributes with respect to a target attribute,
b. In medical data, b may describe high survival probability of
a patient after particular treatment, while other attributes may
record physical parameters in the patients. Having large Σ is
not necessarily a bad feature; on the other hand, an optimally
small set is desirable. Consider the case where X → b,
X ∪ c → b and X ∪ d → b are in the basis and have high
confidence. We may want to keep X → b in Σ and remove the
other rules, which may unnecessarily inflate the importance of
attributes c and d for b. This is because attributes c, d could be
completely unrelated to b, although they appear because the
actual “law” X → b is blocked in several rows.

Since the initial version of the paper was accepted for
the Proceedings of DTMN-2018 conference [21], the D-
basis code implementation was expanded to multiple-thread
computation version, which is presented in detail in section 7.
We also conducted more testing of synthetic data in section
6.2 featuring a prominent rule and a high relevance of a few
attributes to one fixed attribute, then applied various levels of
noise to the input to test whether the multiple row reduction
runs of the algorithm would reconstruct original higher ranking
of prominent attributes.

As far as a structure of the paper is concerned, we combine
both algorithmic and practical issues of the algorithm and re-
port on various testing approaches. We give a short description
of the proposed algorithm in section 2, then in section 3, we
explain how the association rules are used to compute the
relevance parameter of one attribute with respect to the other.

Sections 4 and 5 are devoted to algorithmic aspects of the
D-basis program that can improve performance of the code
for the one-or-several-rows deletion process. Then in section
6.1 we discuss the levels of the relevance parameter in random
matrices. It shows that the high relevance may occur in random
data with the high density of ones.

Finally, in section 8 we outline the further direction of
the work, either with additional experimentation on relevance
computation and MRD process, or application in various data
sets.

II. GENERAL FLOW OF THE ALGORITHM

Herein we describe a several-stage approach that allows
us to compute, beyond just implications, the potentially most
valuable association rules, those whose confidence is rather
high, say, > 0.9.

At the core of our approach is the connection between a
binary table, its implications, and the closure operator defined
on the set of columns and associated lattice of closed sets,
known as the concept lattice or Galois lattice, see [14].

An algorithm in Adaricheva and Nation [1] works to extract
the basis of implications of the table, and it is known as the
D-basis, which was introduced in Adaricheva, Nation, and
Rand [3]. The advantage of this basis is in the possibility
to use algorithms for dualization of an associated hypergraph
that are known to be sub-exponential in their complexity, see
Fredman and Khachiyan [12]. The algorithm in [1] avoids

generating the Galois lattice from the table and only uses the
arrow relations, which can be computed in polynomial time,
to produce a hypergraph for each requested attribute. In that
way, the existing code for hypergraph dualization, such as in
Murakami and Uno [18], can be borrowed for execution.

The main idea of the current algorithm follows from the
observation that the association rules of high confidence may
be computed by removing one or more rows (objects) from the
table and computing implications (on attributes) of a shorter
table. Upon the program’s execution and output, one can
record only new implications that were not present in the
original data set.

A new rule may be derived from the shorter table given that
one of the removed rows fails it. If new rules are present in
this table and exhibit high support, or if numerous new rules
are found with average support, then the row(s) temporarily
removed to form this shorter table are called blockers due to
their tendency to block the rules that were found with their
removal.

We can choose various strategies to identify the set of
blockers. Together with several straightforward statistics on
new rules found on a shorter table, we are considering several
heuristics and ranking systems. The goal is to identify a set S
of rows/objects that are potential blockers.

In the next stage of the suggested procedure, we choose
n ≤ |S| which is a number of rows from S that will be deleted
from original table to form a shorter table. With S and n fixed,
we can run algorithm k times, where k is specified by a user,
and limited by C(|S|, n) = n!

|S|!(|S|−n)! , which is a number of
combinations to choose n rows from set S. If k < C(|S|, n),
then the choice can be done randomly, otherwise, the rows can
by systematically removed.

This process of removing sets of rows and re-running the
program can be organized in parallel, and all the outputs are
combined and aggregated following the same procedure as
used to retrieve the D-basis of implications in the original
D-basis algorithm.

The final set of rules is guaranteed to have the probability
of at least N−n

N that each rule holds in a table, where N is
the total number of rows (objects) in the table, and n is the
number of deleted rows in each run of the algorithm. If s is the
support of some implication A→ b in a shortened table with
N − n rows, then on average the support of A in n deleted
rows will be s · n

N−n .
In the worst case scenario, i.e. when b = 0 in all deleted

rows, the support of A→ b on n deleted rows will be 0. This
gives a lower estimate for the confidence of association rule

A→ b in the full table as
s

s+ s · n
N−n

=
N − n
N

.

For example, given an original table of 90 rows, the confi-
dence of a rule found as an implication in a sub-table of 80
rows, i.e., after deleting 10 rows, will be, on average, around
80
90 = 0.88.

III. RANKING THE ATTRIBUTES OF THE TABLE WITH
RESPECT TO A GIVEN FIXED ATTRIBUTE

The algorithm described in the previous section, when we
try to identify the blockers among the objects/rows of the data,

IT in Industry, vol. 6, no.3, 2018 Published online 11-Sep-2018

Copyright © Oren, Justin Cabot-Miller,
Kira, J.B.Nation 2018

ISSN (Print): 2204-0595
ISSN (Online): 2203-173112

can be interpreted as unsupervised learning about the data set.
These blockers are then interpreted as outliers.

In this section we will take a look at supervised exploration
of the data set, when one of the parameters is a target
column/attribute, and we try to discover other attributes that
might be essential for describing the behavior of the target
parameter.

The algorithm in [1] allows us to retrieve only those
implications X → b in the D-basis that have a fixed attribute
b as a conclusion. This is called a b-sector of the basis. It is
important to notice that one does not need to obtain the full
basis in order to get particular b-sector of the basis.

In our current approach, instead of a set of implications, we
obtained a set ∆ of association rules, where we have traded
the confidence for higher support of the rules. We choose a
number of shorter tables, as described in algorithm of section
2, and compute b-sectors of implications. A final part of the
algorithm then performs a special trimming of the rules, called
an aggregation, leaving only the strongest rules with respect
to the binary part of ∆, which consists of rules of the form
a → d. Thus, in order to obtain the b-sector of basis ∆,
one needs only the binary part of ∆ and combination of b-
sectors of implications of shorter tables. The resulting b-sector
of ∆ after its aggregation will be denoted ∆(b). Note that
one can generate multiple sets ∆(b), so that the following
computations will depend on the particular instance of ∆(b).
For example, a user may decide to include into ∆(b) only the
rules whose support exceeds some given threshold minsup.

Similarly, we could form ∆(¬b), where the original attribute
is replaced by its complement ¬b.

Having fixed ∆(b) and ∆(¬b), we then used the approach
described in [2] to rank the attributes by the relevance param-
eter.

For any attribute a, the relevance relb(a) of a to b is com-
puted based on frequency of a appearing in the antecedents
of implications/association rules related to b in b-sectors ∆(b)
and ∆(¬b). From this definition one can see some relation
between the relevance parameter and the conviction, see for
example [20]. The computation of this parameter takes into
account the support of each individual implication in the
basis where a appears. Since this time we have association
rules of different confidence, we include the confidence into
computation of the relevance as well. For a rule α = (X → b),
conf(α) = sup(X∪b)

sup(X) .
We believe that, for each attribute a ∈ A \ b, the important

parameter of relevance of this attribute to b ∈ A is a parameter
of total support, computed with respect to set of rules ∆:

tsupb(a) = Σ{ |sup(X)|
|X|

·conf(X → b) : a ∈ X, (X → b) ∈ ∆(b)}.

Thus tsupb(a) shows the frequency of parameter a appear-
ing together with some other attributes in implications X → b
of the set ∆(b). The contribution of each implication X → b,
where a ∈ X , into the computation of total support of a is
higher when the support of X is higher, i.e., column a is
marked by 1 in more rows of the table, together with other
attributes from X , but also when X has fewer other attributes
besides a.

While the frequent appearance of a particular attribute a in
implications X → b might indicate the relevance of a to b,
the same attribute may appear in implications X → ¬b.

Replacing ∆(b) by ∆(¬b) in above formula, we can also
compute the total support of ¬b, for each a ∈ A \ b:

tsup¬b(a) = Σ{ |sup(X)|
|X|

·conf(X → ¬b) : a ∈ X, (X → ¬b) ∈ ∆(¬b)}.

Define now the relevance of parameter a ∈ A \ b to
parameter b, with respect to bases ∆(b) and ∆(¬b):

relb(a) =
tsupb(a)

tsup¬b(a) + 1
.

The highest relevance of a is achieved by a combination of
high total support of a in rules X → b and low total support
in rules X → ¬b. This parameter provides the ranking of all
parameters a ∈ A \ b.

As indicated above, the computation of the relevance can be
done not only with implications but with any set of association
rules ∆. We believe that association rules of high confidence
may provide a better set for computation of the relevance.

Observation with the data shows, and theoretical results
confirm [4], [5], that a rule X → b that fails in one or a
few rows of table may appear through the set of implications
X ∪ d → b, with multiple attributes d, which may inflate
tsupb(a) for element a ∈ X . When one or a few rows failing
the rule X → b are deleted, then X → b will be discovered,
and the process of the aggregation will eliminate all the rules
X ∪ d→ b from the final set of rules used for computation of
the relevance.

IV. ALGORITHMIC ASPECTS ONE-OR-SEVERAL-OBJECT
DELETION IN BINARY TABLES

In this section we consider some aspects of the algorithm
of the D-basis retrieval, when there is a modification to the
original binary table T = (U,A,R), in particular, one or more
elements in set U are deleted. Here U is a set of objects/rows,
A is the set of attributes/columns, and R ⊆ U × A is the
subset of table entries marked as 1. We refer to the description
of the D-basis algorithm given in [1]. Skipping this and the
following sections will not affect the understanding of the rest
of the paper.

The first procedure of the D-basis algorithm is the reduction
of sets A and U .

Our goal is to show that, when we need to run the algorithm
on the table with one or several elements of U deleted, one
can skip the step of row reduction in the algorithm and re-use
the set U ′ from the process run on the original table.

Recall that relation R can be reduced to a relation R′ ⊆
U ′ × A′, where U ′ ⊆ U , A′ ⊆ A and R′ = R|U ′×A′ ,
so that |U ′| and |A′| are minimal with respect to property
L′R ' LR, where LR is the Galois lattice associated with
table T = (U,A,R), similarly, for L′R. Check the discussion
of the reduction procedures for the general closure systems,
for example, section 2 of [3]. In other words, one may leave
only essential objects and attributes in the relation and remove
the others. The elements of U ′ are in bijection with the set of
meet-irreducible elements of Galois lattice LR, and elements

IT in Industry, vol. 6, no.3, 2018 Published online 11-Sep-2018

Copyright © Oren, Justin Cabot-Miller,
Kira, J.B.Nation 2018

ISSN (Print): 2204-0595
ISSN (Online): 2203-1731

13

of A′ are in bijection with the set of join-irreducible elements
of LR. Moreover, one has 1 in the table T ′ in row u and
column a iff a ≤ u in the lattice LR.

Let us discuss in more detail how the reduction from T
to T ′ occurs. Element a ∈ A may be reduced (leaving LR

unchanged) if there exists a subset Xa ⊆ A \ {a} such that
SUSA({a}) = SUSA(Xa) =

⋂
x∈Xa

SA(x). Recall that SA

is a standard mapping from A to U defined as SA(Y) = {u ∈
U : (u, y) ∈ R, for all y ∈ Y }, for Y ⊆ A. Symmetrically,
SU (Z) = {a ∈ A : (z, a) ∈ R, for all z ∈ Z}, for Z ⊆ U .

When Xa 6= ∅, this is equivalent to the fact that double
implication a ↔ Xa holds in closure system (A,SU ◦ SA).
Such an implication is easy to check in a binary table: (u, a) ∈
R iff (u, x) ∈ R for all x ∈ Xa.

There is also a special case when column a has only
1 entries, which corresponds to Xa = ∅ and the set of
implications a′ → a for all a′ ∈ A. Another special case
is when column a has only 0 entries, which corresponds to
the set of implications a→ a′ for all a′ ∈ A, but removal of
a in this case may potentially remove the top element of LR.

Similarly, an element u ∈ U may be reduced (leaving
LR unchanged) if there exists a subset Xu ⊆ U such that
SASU ({u}) = SASU (Xu) =

⋂
x∈Xu

SU (x). Special cases
are also with all 0 or all 1 in row u ∈ U , similar to those for
a ∈ A.

A table T ′ = (U ′, A′, R′) is called reduced, if rows and
columns are non-trivial and SUSA(a) 6= SUSA(Xa) for any
a ∈ A, Xa ⊆ A′\{a}, and, similarly, SASU (u) 6= SASU (Xu)
for any u ∈ U , Xu ⊆ U ′ \ {u}.

The following observation is the basis for the reduction
process.

Lemma 1. Given a binary table T = (U,A,R), suppose
SUSA({a}) = SUSA(Xa) =
=

⋂
x∈Xa

SUSA(x), for some a ∈ A,Xa ⊆ A. Consider the
table T ∗ = (U,A \ {a}, R). Then an element u ∈ U may be
reduced in T ∗ = (U,A \ {a}, R) iff it may be reduced in the
original table T = (U,A,R).

Proof: Denote [u, a] = 1, if (u, a) ∈ R, and 0 otherwise.
If u can be reduced in T = (U,A,R), then there exists

(assume non-empty) Xu ⊆ U with SU ({u}) = SU (Xu) =⋂
x∈Xu

SU (x). This is equivalent to [u, a′] = Πu′∈Xu
[u′, a′],

for any a′ ∈ A. If one ignores a ∈ A that is getting reduced,
then equality still holds for all a′ ∈ A \ {a}. Therefore, the
same u may be reduced in (U,A \ a,R).

Vice versa, consider a (non-trivial) u that may be reduced
in T ∗ = (U,A \ a,R). We need to check that [u, a] =
Πu′∈Xu

[u′, a].
If [u, a] = 1, then due to the assumption about a, we have

[u, a] = Πa′∈Xa [u, a′], therefore, [u, a′] = 1 for all a′ ∈ Xa.
Now Xa ⊆ A \ {a}, so we may apply the assumption about
reducibility of u in (U,A \ a,R): for each fixed a′ ∈ Xa, we
have 1 = [u, a′] = Πu′∈Xu

[u′, a′], therefore, [u′, a′] = 1 for
all u′ ∈ Xu, a

′ ∈ Xa. If we now fix u′ ∈ Xu, then we can
compute [u′, a] = Πa′∈Xa [u′, a′] = 1. Therefore, every factor
on the right of the formal equality [u, a] = Πu′∈Xu [u′, a] is
equal to 1, turning it into true equality.

If [u, a] = 0, then due to the assumption about a, we have

[u, a] = Πa′∈Xa [u, a′], so that [u, a′] = 0 for at least one a′ ∈
Xa. This implies, due to the reducibility of u in (U,A \ a,R)
that [u′, a′] = 0 for at least one u′ ∈ Xu. Again, due to
assumption about a, we have [u′, a] = Πa′′∈Xa

[u′, a′′] = 0.
Hence, the right side of formal equality [u, a] = Πu′∈Xu

[u′, a]
turns into 0, thus, making it true equality.

It is easy to verify the statement in trivial cases when a or
u has all 0 or all 1 entries.

It follows from the Lemma that one may reduce element
u ∈ U before or after reducing element a ∈ A. Also, the
dual statement can be done switching the roles of U and A in
Lemma 1.

The following statement looks into a typical setting of the
row deletion process that is central in this paper.

Proposition 1. Suppose table T = (U,A,R) has a reduced
form T ′ = (U ′, A′, R′), with U ′ ⊆ U,A′ ⊆ A. If u∗ ∈ U ′ is
deleted, then T ∗ = (U \ u∗, A,R) can we reduced to T ′′ =
(U ′ \ u∗, A′′, R′′).

Proof: First, check that both tables (U ′ \ u∗, A,R) and
(U ′\u∗, A′, R′) are reduced with respect to their set of objects.
Indeed, if u′ ∈ U ′ \ {u∗} could be reduced, then, for some
Xu ⊆ U ′ \ {u∗}, [u′, a] = Πu′′∈Xu

[u′′, a], for any a ∈ A.
This would mean that u′ can be reduced in table T ′, which
contradicts the assumption.

On the other hand, table (U ′ \ u∗, A′, R′) may become
reducible with respect to set A′. This will occur if, for
some choice of a ∈ A′, Xa ⊆ A′ \ {a}, the equality
[u, a] = Πa′∈Xa [u, a′] holds for all elements u ∈ U ′ except
u∗. Then the element a becomes reducible after u∗ is deleted.

So assume that we reduced the set A to A′′ ⊆ A′. Then
due to Lemma 1, after some element a ∈ A′ is reduced, the
set U ′ \ {u∗} still cannot be reduced.

Apparently, consecutive application of Proposition 1 brings
to the similar statement for a multiple row deletion case. This
proposition can be used to reduce overhead when running
multiple processes on the table after deleting one or several
rows.

V. ARROW RELATIONS IN THE ORIGINAL TABLE AND
AFTER ONE-OBJECT REDUCTION

The second step of the D-basis algorithm in [1] deals with
establishing arrow relations between objects and attributes of
the reduced table. In this section we look into some overhead
reduction for the computation of arrow relations, when one of
the objects/rows is deleted.

We may assume that we are working with a reduced table
T ′ = (U ′, A′, R′). The binary table allows one to quickly
recover additional information on L′R (Mi(L′R) and Ji(L′R)
stand for meet-irreducibles and join-irreducibles of the Galois
lattice L′R, respectively):
(1) Establishing a partial order (U ′,≤) = (Mi(L′R),≤);
(2) Establishing a partial order (A′,≤) = (Ji(L′R),≤);
(3) Establishing arrow relations ↑, ↓, and l.

Recall that u1 ≤ u2, for u1, u2 ∈ U ′, iff (u1, a) ∈ R′

implies (u2, a) ∈ R′ for every a ∈ A′. Symmetrically, a1 ≤
a2, for a1, a2 ∈ A′, iff (u, a2) ∈ R′ implies (u, a1) ∈ R′, for
every u ∈ U ′.

IT in Industry, vol. 6, no.3, 2018 Published online 11-Sep-2018

Copyright © Oren, Justin Cabot-Miller,
Kira, J.B.Nation 2018

ISSN (Print): 2204-0595
ISSN (Online): 2203-173114

Now for a ∈ A′ and u ∈ U ′, a ↑ u is defined to hold iff
u is a ≤-maximal element among elements of U ′ that are not
greater than a.

Dually, a ↓ u iff a is a ≤-minimal element among elements
of A′ that are not less than u.

Finally, a l u, if both a ↑ u and a ↓ u hold.
It is clear that algorithmically, the reconstruction of arrow

relations is equivalent to finding maximal or minimal elements
in a particular partially ordered set, which are sub-posets of
either (U ′,≤) or (A′,≤).

Now suppose that the element u∗ ∈ U ′ is deleted in table T ′,
so that T ∗ = (U ′ \ {u∗}, A′, R′). According to the discussion
in the previous section, the table may be reduced to T ′′ =
(U ′ \ {u∗}, A′′, R′′), where A′′ ⊆ A′, i.e. only the set A′

might be reduced. Then
(1) Partial order on (U ′ \ {u∗}) induced by table T ′′ is the

extension of ≤ defined on elements of U ′;
(2) Partial order on (A′′,≤) induced by table T ′′ is the

extension of the sub-poset induced by (A′,≤) on A′′;
This implies the following statement that reduces the compu-
tation of ↑, ↓ and l in T ′′.

Lemma 2. Suppose T ′′ = (U ′ \ {u∗}, A′′, R′′) is a reduced
sub-table of another reduced table T ′ = (U ′, A′, R′) after
deletion of item u∗.

– If u1 ≤ u2 or a1 ≤ a2 in T ′, then the same is true in
T ′′.

– If a ↑ u in T ′′, then a ↑ u in T ′. For every a ↑ u1 in T ′

which does not hold in T ′′, there exists another a ↑ u2
in T ′ such that u1 ≤ u2 in T ′′.

– If a ↓ u in T ′′, then a ↓ u in T ′. For every a1 ↓ u in T ′

which does not hold in T ′′, there exists another a2 ↓ u
in T ′ such that a2 ≤ a1 in T ′′.

The check is straightforward and left to the reader.

VI. THE RELEVANCE COMPUTATION IN RANDOM
MATRICES AND SYNTHETIC DATA

A. Random matrices

In this section we look into computation of the relevance
parameter in random matrices. As was discussed in section
III, the relevance parameter relb(a) measures the frequency of
attribute a appearing in the rules X → b in comparison with
the rules X → ¬b. We note that the computation depends
on the set of association rules ∆ that is chosen for the
measurement.

According to the formula for the relevance, only attributes
a with relb(a) > 1 are of interest as possible “influencers”
for behavior of b. On average, one would expect that values
of relevance values in random matrices would tend to be close
to 1.

It turns out, and the probabilistic argument as well as testing
confirm, that random matrices with high density of ones may
generate high values of the relevance of one attribute to the
other. We ran a large number of test experiments showing that
(1) the average value of the relevance of an attribute in the

table to one fixed attribute remains close to 1.5 for the
densities of the table between 0.3 and 0.6.

(2) In the tables with densities of ones higher than 0.7, the
relevance exhibits considerable grows.

(3) In the tables with densities below 0.3 the average values
of relevance stay below 1.

This suggests that relevance could be reliable tool to rank
the “importance” of attributes with respect to one fixed at-
tribute in the range of densities of ones in a table up to 0.6.

We will assume that the randomness of the matrix is
specified by parameter q = 1−p, which is a probability of any
entry being 1, so that the probability of 0 is p. The matrix can
be obtained through the process of generating its entries, every
time choosing a real number r randomly in interval [0,1], and
placing 1, when r ≥ p, and 0 otherwise. Then the density of
ones in resulting matrix should be expected close to q.

In general, it can be computed that the probability of fixed
implication X → k, |X| = x, having support t in random
matrix with m rows and density q is given by formula

P (tsup(X → k) = t) = C(t,m)q(x+1)t(1− qx)m−t.

The formula indicates that the probability could be relatively
large when q is high and t is high, but diminishes for smaller
t. For example, in a matrix with number of rows m = 10,
t = 5 and q = 0.8, for any choice of distinct attributes i, j, k:

P (tsup(ij → k) = 5) = C(5, 10)(0.8)15(0.2(1.8))5 ≈ 0.05361.

This is considerably higher than the probability of such an
implication having support t = 2:

P (tsup(ij → k) = 2) = C(2, 10)(0.8)6(0.2(1.8))8 ≈ 0.0033,

In the D-basis produced by algorithm on random matrix
10× 22 with q = 0.8, we have 8 implications i → k,
13 implications ij → k and one implication ijs → k. All
implications i→ k have support 7 and 8, except for one with
support 6, and all implications ij → k have support between
4 and 7, most with support 5 and 6.

When the relevance is computed for any attribute x with
respect to attribute k, the column of attribute k is inverted
to ¬k, and thus the density of that column turns to 1 − q.
Therefore,

P (tsup(X → ¬k) = t) = C(t,m)qxt(1− q)t(1− qx)m−t.

For q = 0.8 we get p = 0.2, thus

P (tsup(ij → ¬k) = 5) = C(5, 10)(0.8)10(0.2)5(0.2(1.8))5

≈ 0.05E − 3.

This explains why one could expect relatively high possible
values for relevance parameter relk(i), when q is high.

When switching to relatively low values of q, there is higher
probability of implications of low support. For example, with
q = 0.3

P (tsup(ij → k) = 2) = C(2, 10)(0.3)6(0.7(1.3))8 ≈ 0.0154,

P (tsup(i→ k) = 7) = C(7, 10)(0.3)21(0.7(1.3))3 ≈ 9.45E−10,

IT in Industry, vol. 6, no.3, 2018 Published online 11-Sep-2018

Copyright © Oren, Justin Cabot-Miller,
Kira, J.B.Nation 2018

ISSN (Print): 2204-0595
ISSN (Online): 2203-173115

Fig. 1: The average value of the relevance (y-axis) depending
on the density of a table (x-axis)

This time, when switching to xy → ¬k, we may see
probability increased. For example,

P (tsup(ij → ¬k) = 2) = C(2, 10)(0.3)4(0.7)2(0.7(1.3))8

≈ 0.0839,

As a result, lower values of relk(i) are expected for low values
of q.

We tested a large series of random matrices of the same
size 20×32, computing the relevance of attributes 1, . . . 31 to
k = 32, while varying q = 0.1 to 0.9. The average values of
the relevance values are summarized in the Figure 1.

Several thousand random binary tables of fixed size 20×32
and two different densities were analyzed, and their relevance
characteristics are described in Table 1.

TABLE I: Example of the relevance at two densities

Density Max Average 50th percentile 75th percentile 90th percentile
.3 19.75 .951 .520 1.182 2.212
.5 121.833 1.523 .972 1.476 2.718

When the relevance is computed in real data, the values
should be adjusted to the average expected for particular
density. For example, when analyzing data with q = 0.4, one
would expect the average relevance to be 1.5. Therefore, if
relk(i) = 1.3 for some parameters i, k, this indicates that i is
not particularly important for k, even though relk(i) > 1.

B. Synthetic data with a prominent rule

In this section we describe the test with synthetic data: a
binary table of size 50×50, which was initially generated as
a random table of density d = 0.3, but then 20 rows were
modified to enforce the rule 1, 2, 3, 4 → 50 that had support
in the first 16 rows, and the next 4 rows were modified to fail
one of the shorter rules: 1, 2, 3 → 50, 1, 2, 4 → 50, 1, 3, 4 →
50, or 2, 3, 4 → 50. This would ensure the optimality of the
rule 1, 2, 3, 4 → 50, i.e., that no shorter rule Y → 50 with
Y ⊆ {1, 2, 3, 4} would hold in the table. The rest of the table
was checked and slightly modified to guarantee that the rule
1, 2, 3, 4→ 50 did not fail in all remaining rows.

Then we imposed various levels of noise: whenever the
noise was at level p ∈ (0, 1), with probability p each entry
of the table would switch from 0 to 1 or from 1 to 0.

We used the following approach to estimate the number of
rules that need to be removed in order to reveal the rule that
fails due to noise.

If we have that the rule X → b fails in some tabled data
with noise, but should hold in the original table without the
noise, then a good estimate for the number of rows where the
rule may fail due to the noise is

N = ndp,

where n is the number of rows in the table, d is the density
of ones in column b (thus, nd=number of ones in column b),
and p is the probability that a 1 in column b is turned to 0 due
to noise. Indeed, most failures of the rule will occur in rows
of the table which would support the rule without noise, but
with a 1 in column b erroneously switched to 0.

Under additional assumptions that the density d in the table
does not change much due to noise, nd gives approximately
the number of ones in column b in the original table, whence
ndp will give the number of rows where 1 switched to 0 in
column b.

With this estimation, if one deletes N rows where the rule
1, 2, 3, 4 → 50 fails, the rule will hold in all remaining rows
of the sub-table, so that it can be uncovered by the D-basis
algorithm processed on the sub-table.

One of the options to run the multiple row deletion algo-
rithm based on the D-basis is to choose the number k of row
that will be deleted for every run of the algorithm, and then
run it C(n, k) = n!

k!(n−k)! times on sub-tables with n−k rows.
Due to the fast growth of C(n, k), this exhaustive choice of
sub-tables is possible for small values of k only.

The other approach is to run a data-specific number of
sub-tables, choosing deleted rows randomly. In both cases,
the program will aggregate and reduce the set of rules to
approximate a complete and optimal set of rules describing a
given table. We mention experiments of this sort with synthetic
data later in this section.

A more advanced approach is to use the algorithm in
a different mode, when some statistics are computed for
new rules generated due to row deletion, and to identify
“the blockers”, the rows that fail essential rules. See more
discussion in section II.

We tested several ranking methods to select the rows should
be deleted in order to recover rules lost to noise. One of the
tested heuristics is based upon analyzing the inverted table,
although the reason for this heuristic’s efficacy has not yet
been identified.

This direction of research and experiments seems to be
worth pursuing, and we plan to conduct more experiments
in the future.

Our current experiment was conducted for the table with
implication 1, 2, 3, 4→ 50 that had support s = 16. Columns
5 through 49 were generated randomly with density 0.3. We
computed relevances rel50(a) for a = 1, . . . 49 on the original
table, based on the part of the D-basis with minimal support
5. Values of rel50(1), rel50(2), rel50(3), rel50(4) were the
highest in the range of 101–194, while the next highest
rel50(a) was 69.5.

IT in Industry, vol. 6, no.3, 2018 Published online 11-Sep-2018

Copyright © Oren, Justin Cabot-Miller,
Kira, J.B.Nation 2018

ISSN (Print): 2204-0595

ISSN (Online): 2203-173116

We then imposed 2% noise and recomputed relevances first
using the D-basis with min-support=5 only, and then with
MRD process that was run 1125 = C(50, 2) times, on sub-
tables obtained by removing 2 rows, again using the rules with
min-support ≥ 5. Note that there were 226 implications of min
support 5 in the D-basis and 368 rules in the set obtained via
MRD process.

It is worth noting that the relevances computed on the
D-basis did not change much compared to initial table. In
particular, the relevances for the first 4 attributes had still
the highest rank. With addition of the rules uncovered by
MRD, the result was slightly worse: only two out of the first 4
attributes preserved their highest rank among all the attributes.

The next level of the noise p = 5% brought similar results:
the D-basis with min-support ≥ 5 had 177 implications and
with MRD about 280 rules. The program computed rel50(1),
rel50(2), rel50(3), rel50(4), just on the D-basis, in the range
of 46.5–99.8, and three out of these numbers ranked as the
first, the second and the fourth. With MRD imposed, three
best ranked among attributes 1,2,3,4 were in the first, the fifth
and the sixth positions.

At the level of p = 20%, the D-basis produced the rankings
of rel50(1), rel50(2), rel50(3), rel50(4) in the range of 65.9–
208.3 and three of these values were with the highest rank.
For MRD process, based on the estimation N = npd, we
needed to delete 5 rows at a time, so instead of exhaustive
choice we opted for 500 processes, choosing 5 rows randomly.
None of the 4 attributes 1,2,3,4 had high rank in the relevance
computation.

Finally, at the level p = 26%, we saw only one of rel50(1),
rel50(2), rel50(3), rel50(4) as a top ranking, with only D-
basis computation, another was at the 5th position, and two
others close to 0. With MRD, we ran 1000 random processes
removing 5 rows at a time. As before, only the rules with min-
support ≥ 5 were included into the computation. The results
were comparable with those done with the D-basis only.

This experiments indicates that the MRD process needs
finer tuning, and more experimentation should be done with
the initial estimation of possible “blockers”. Moreover, the
massive run of row deletion across all the rows of the table
may have an inflation effect on relevance computation for less
important attributes.

We would like to highlight the robust effect of the D-basis
relevance computation even with the high levels of the noise
in this experiment. We also re-computed relevances using the
D-basis while changing the level of min-support: to ≥ 8 for
the case of 2% noise, and to ≥ 7 for the case of p = 20%
noise. While the absolute values of relevances change, we still
obtained highest values for all 4 and 3 out of 4 first attributes,
respectively.

VII. TECHNICAL IMPLEMENTATION

Sequential algorithms are of little practical use when deal-
ing with sufficiently computational complex problems and/or
sufficiently large problems [9]. Since the beginning of the
demise of Dennard’s scaling in the mid 2000’s [10], the focus
of mainstream computing hardware has moved away from

sequential acceleration into parallel acceleration using multiple
cores of execution [16]. Since then, algorithms can no longer
rely on regular incremental improvements in serial execution
speed due to Dennard’s scaling. Instead the focus of high
performance programming shifted to parallel algorithms. In
addition, due to the demands of the age of big data and the
decline in custom computing hardware, many of the algorithms
in use today must also scale beyond the confines of a single
homogeneous computing environment into a distributed het-
erogeneous execution environment [9].

Finding association rules is a computationally complex
problem [1] and our approach is meant to address this issue
using a collection of parallelizable algorithms that are scalable
in a distributed processing environment.

A. Algorithm Descriptions
At the heart of our new approach for discovering new

implications is the parallel execution of a Hypergraph Du-
alization Algorithm(HDA). Given a set of rows to remove
from the original table, our algorithm will run multiple parallel
instances of the HDA, dividing the work between all available
computer cores.

To facilitate the parallel execution of the HDA we use the
Master/Worker parallel computation model [24] running on top
of MPI [13], in which a master process orchestrates the parallel
execution of the complete job by breaking it into multiple
smaller pieces and submitting them to worker processes.

The choice of MPI was made to allow us maximum flexibil-
ity and portability in the execution of our algorithms. MPI can
scale from a single machine with multiple cores to hundreds
of machines with thousands of cores [11] and can run on a
variety of computer clusters and hardware configurations.

B. Algorithm Implementations
The Master/Worker model requires two separate processes:

a master process and a worker process.
1) Master Process: The master process (seen in algorithm

1) is in-charge of orchestrating the work. It accepts a list of
row-groups to remove and the original matrix as parameters.
It starts by running the D-Basis algorithm and finding all
the implications on the original matrix (line 1). Then, while
there are still row-groups left to process, it checks if any idle
workers (see worker algorithm 2) are available (line 3) and
if so, submits a new job (line 5) with a row-group as a job
parameter for the worker.

It then checks if any previously submitted jobs have finished
(line 7) and if so calculates the new implications (line 9) by
removing any duplicates that were found in the first step (line
1).

The algorithm allows two modes of operation: one ag-
gregates implications and the other does not. In aggregation
mode, we collect all the new implications produced by all
the row group deletions (line 12) and when aggregation is
off, we only report the new implications after each row group
deletion (line 10) but we do not aggregate them. In addition,
when aggregation mode is on, we reduce the number of final
implications following the procedure described in Proposition
17 of [3].

IT in Industry, vol. 6, no.3, 2018 Published online 11-Sep-2018

Copyright © Oren, Justin Cabot-Miller,
Kira, J.B.Nation 2018

ISSN (Print): 2204-0595

ISSN (Online): 2203-173117

Algorithm 1 DBasis Master

Require: RCL contains a list of row groups to remove;
OrgMat contains original Matrix to work on

1: allImplications← FINDDBASIS(OrgMat) . find
D-Basis on original table

2: while NOTEMPTY(RCL) do
3: if HASIDLEWORKERS() then . check if we have

idle workers that can do some work
4: rowGroup← REMOVENEXTGROUP(RCL) .

get next group in RCL
5: SUBMITNEWJOB(rowGroup) . submit row

group to parallel processing
6: end if
7: if ANYFINISHEDJOBSREADY() then
8: newImplications ←

GETFINISHEDJOBIMPLICATIONS()
9: newImplications ← (newImplications −
allImplications) . remove duplicates from new
implications

10: Report(newImplications)
11: if shouldAggregate then
12: allImplications ← allImplications +

newImplications . aggregate all the implications
13: end if
14: end if
15: end while
16: if shouldAggregate then
17: Reduce(allImplications) . reduce final inclusive

list
18: Report(allImplications) . report final inclusive list
19: end if

Algorithm 2 DBasis Worker

Require: OrgMat contains original Matrix to work on
1: while MASTERNEEDSME() do
2: if ANYPENDINGJOBS() then
3: rowGroup← GETPENDINGJOBROWGROUP()
4: newImplications ← FINDDBASIS(OrgMat −
rowGroup) . find DBasis on original table - rowGroup

5: SUBMITJOBRESULT(newImplications) .
submit row group to parallel processing

6: end if
7: end while

2) Worker Process: The worker process (seen in algorithm
2) receives the original matrix when it is first spawned. It then
waits (line 2) for jobs submitted by the master process (see
algorithm 1). If a job is available, it will extract the row-group
parameter (line 3) and proceed to call the HDA algorithm (line
4) using the original matrix minus the rows to remove. Once
the results are ready, it will submit a reply (line 5) with the
new implications to the master process. When the master is
done, it will signal the worker to terminate (line 1) and free
any system resources it is holding. The number of workers are
controlled from the command line on the master node when
executing the MPI job.

Algorithm 3 Parallel Reduce

Require: imps list of all implications
1: procedure PARALLELRE-

DUCE(imps, resList, startIndex, stepSize) . parallel
reduce entry point

2: for i ← startIndex; i < sizeOf(imps); i+ =
stepSize do . from startIndex in steps of stepSize

3: for j ← 0; j < sizeOf(imps); j+ = 1 do .
from first to last

4: if (Equal(imps[i],impj[j]) Or
Cover(imps[i],impj[j]) And NotRemoved(resList[j])
then

5: MarkForRemoval(resList[i]) .
check if the implication is implied by another and mark
for removal if so

6: end if
7: end for
8: end for
9: end procedure

3) Parallel Reduction: When running in aggregation mode
(see algorithm 1), the last stage of the master process in-
cludes reduction, i.e., searching and removing redundant and
weaker rules from the final implication list. While conducting
experiments we discovered that the computation of this step
becomes a bottleneck and increases the overall computation
time of our algorithms. To solve this issue, we have devised a
parallel reduction algorithm. The parallel reduction algorithm
(algorithm 3) allows for multiple hardware threads to search
for redundant implications and remove them.

Each instance of the parallel reduction algorithm accepts
the original list of implications and which sub list to work
on(using the start index and the step size). It then traverses
the list of implications (lines 2–3) and tries to independently
find if an implication is equal or covered by another stronger
implication (line 4). If indeed a stronger implication is found,
the current implication is marked for removal. Note that the
algorithm makes sure that no implication will be removed
twice or that an implication that was already deleted by another
parallel thread will be used.

C. Algorithm Performance Analysis

1) Experiment Design: In order to evaluate the performance
of the new D-basis parallel algorithm implementation versus
sequential implementation, we have devised an experiment that
involves a typical workload and real-world data from a medical
database containing 291 ovarian cancer patients [2].

Each experiment run involves calling D-basis 50 times
and each time removing 3 rows with column 81 selected
as the implication right hand target and minimum support
equal 5. The run results are then aggregated, reduced and
reported to the user. We run multiple experiments on different
configurations and report the performance results.

The experiments were conducted on a custom made Open-
MPI based computer cluster comprised of 4 Virtual Ma-
chines(VMs), each with 8 Intel(R) Xeon(R) CPU E5-2660 v2

IT in Industry, vol. 6, no.3, 2018 Published online 11-Sep-2018

Copyright © Oren, Justin Cabot-Miller,
Kira, J.B.Nation 2018

ISSN (Print): 2204-0595
ISSN (Online): 2203-173118

@ 2.20GHz cores and 16GiB of DDR3 RAM, provisioned
on Hofstra University’s Big Data center; bringing the total
number of cores to 32 and total RAM to 64GiB.

2) Experimental Results: We start by using a single VM (8
cores) and running the sequential D-basis algorithm followed
by a reduce operation which can either be sequential or
parallel.

Figure 2 shows the average run time of the sequential
version of D-basis followed by sequential reduce (1) versus a
sequential D-basis followed by parallel reduce (1+pr).

Fig. 2: Sequential vs Parallel Reduce - time in sec of HDA,
Reduce and Total run time

On average using parallel reduce improves the performance
of the reduce operation (see algorithm 1) by 6.8X. The
algorithm is executed on eight parallel hardware threads to
achieve this speedup.

Since in this workload the reduction step is almost as
expensive as the HDA part, the overall run time is 1.8X faster
as well.

3) Scaling Beyond a Single Machine: In the next step we
test how the D-basis parallel HDA execution scales from
multiple cores on a single machine to multiple machines across
the cluster.

Figure 3 shows the average run time of the sequential
version of the D-basis algorithm versus a version of the
algorithm that uses parallel reduce and parallel D-basis.

The graph analyzes three components: HDA time, Reduce
time and Total run time on different number of cores (1–32).
The X axis specifies the number of cores, from 1 core on the
left to 32 cores on the right. Each group of 8 cores represents
one VM. When launching a parallel job we specify to MPI how
many cores we wish to use and depending on the number of
cores available on the VM/CPU it will first try to use a single
VM and if it runs out of cores it will spill over to the next
VM. in our case since we have 4 VMs each with 8 cores, up
to 8 cores would mean a single VM, 8–16 cores would mean
2 VMs etc.

A single run of the HDA algorithm takes an average of
133 seconds to complete. When using the parallel version we
can see that the overall time drops as we use more cores. A
sequential run will take a minimum of 6650 (133∗50) seconds

to complete on average but as we scale the number of cores we
drop the time it takes to run all HDA instances since they are
done in parallel. As can be expected the performance improves
as we add more cores. The best performance was achieved
when we used the maximum number of cores (32). At that
point the total time to compute HDA was 22.5X faster.

Fig. 3: Sequential vs Parallel Results- time in sec of HDA,
Reduce and Total run time

Parallel reduce time fluctuates across experiments between
665.77 and 1459.14 seconds but on average is 6.8X faster than
the sequential reduce version.

The total run time fluctuates as well but as can be seen,
it scales with the number of cores and the best performance
achieved was 12.2X speedup when we used 28 cores running
across 4 VMs on the MPI cluster. The top three results, as
expected, were achieved when we used the most number of
cores (28–32).

D. Comparison to Sequential Performance Results

In previous work [21] we reported the runtime performance
of our sequential implementation. We now compare those
results with the performance of the new parallel algorithm
versions.

Fig. 4: Old Sequential vs New Parallel Medical Results- time
in sec of HDA, and total run time without reduce operation

Figure 4 shows the runtime comparison of the old sequential
algorithm versus the new parallel algorithm running on the
same medical database containing 291 ovarian cancer patients
[2] but with a different set of parameters, replicating the
original experiment in [21]. The experiment involved calling
D-basis 25 times and each time removing 20 rows with

IT in Industry, vol. 6, no.3, 2018 Published online 11-Sep-2018

Copyright © Oren, Justin Cabot-Miller,
Kira, J.B.Nation 2018

ISSN (Print): 2204-0595
ISSN (Online): 2203-173119

column 81 selected as the target and minimum support equal
5. Also note that during the original experiment the reduction
step was not used and so we report the same here. As can
be seen the total run time without reduce scales with number
of cores and reaches a peak of 9.7X speedup when using 32
cores. Total HDA run time scales as well and reaches a peak
of 14.3X speedup at 32 cores.

Fig. 5: Old Sequential vs New Parallel Retail Results- time in
sec of HDA, and total run time without reduce operation

Figure 5 shows the runtime comparison of the old sequential
algorithm versus the new parallel algorithm running on the
Frequent Itemset Mining Dataset Repository [26], a retail
market basket data from an anonymous Belgian retail store
with a set of parameters replicating the original experiment
in [21] which involved calling D-basis 200 times and each
time removing 3 rows with no column selected and minimum
support equal 3. Here again, during the original experiment,
the reduction step was not used and we do the same. In this
workload (type of data), since the matrix has low density
(0.0162) the HDA algorithm takes a fraction of a second to
execute and so the communication overhead makes it difficult
to scale well across multiple cores and to gain a significant
advantage over using sequential HDA. Close to maximum
performance gain is achieved on a relatively low number of
cores and the maximum performance gain is 3.9X. The total
run time speedup without reduce is reached at 32 cores but
with a mere 3.8X speedup and with very little improvement
over using 8 cores, for example.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have discussed the development of an
algorithm for the retrieval of association rules in a binary
table i.e., a table consisting of ones and zeroes as another
representation of the data. This is done via dualizing the
hypergraph associated with the dataset, then reducing the task
of rule generation to traversing this associated hypergraph via
a sub-exponential time-complexity algorithm [1].

Several development proceedings were discussed, including
the parallelization of the program and a top-down method of
retrieving rules which hold in all rows of the table except a few
deleted rows. Analyzing a slightly smaller sub-table allows to
discover rules which have high confidence and may fail in a
few rows due to noise in the data. The ability for this code to
be parallelized and its low theoretical time complexity make
it a powerful tool for data mining.

The relevance parameter for determining the importance of
one attribute to an outcome was also tested to see how it might

be used in analyzing real data. It was seen that even random
rules could produce a notable relevance values, summarized
in Figure 1. Then, a synthetic rule was constructed and noise
was added to the table in order to see what effect noise would
have on the relevance of the parameters of the constructed
rule, and whether or not the process of retrieving rules of high
confidence via row deletion could recover high relevances of
important parameters for an outcome. The tests revealed that
relevance stayed relatively stable up until approximately 20%
noise, when it was computed using the D-basis, and some
further tuning of MRD process is required to improve these
results. For this, additional analysis of possible “blockers”
should be further explored before applying MRD process.
This will be a prominent direction of further analysis and
experiments.

The further development of the D-basis implementation is
underway, with the goal to use parallel computation of minimal
hitting sets in algorithm [18], which are now available in
public domains. We currently have several data sets in biology,
medicine and meteorology which we plan to explore, working
in collaboration with Biology Department, Geology, Environ-
ment and Sustainability Department of Hofstra University,
as well as Donald and Barbara Zucker School of Hofstra-
Northwell. We also plan to continue the collaboration with
the Cancer Center of University of Hawai’i, and contribute to
the exploration of data sets of various cancers, which combines
several available methods [19].

Acknowledgements. We used for testing the data set on
ovarian cancer available at [25], which was also used in [2]
and managed in the lab of Dr. Gordon Okimoto, at University
of Hawai‘i Cancer Center. We thank the support of Computer
Science Department of Hofstra University for providing the
virtual machine environment for this project. The second au-
thor was supported by Honor’s College of Hofstra University’s
Research Assistant Grant and the Hofstra Advanced Summer
Program in Research (ASPiRe).

REFERENCES

[1] K. Adaricheva, and J.B. Nation, Discovery of the D-basis in binary tables
based on hypergraph dualization, v.658 (2017), Theoretical Computer
Science, Part B, 307–315.

[2] K. Adaricheva, J.B. Nation, G. Okimoto, V. Adarichev, A. Amanbekkyzy,
S. Sarkar, A. Sailanbayev, N. Seidalin, and K. Alibek, Measuring the
Implications of the D-basis in Analysis of Data in Biomedical Studies,
Proceedings of ICFCA-15, Nerja, Spain; Springer, 2015, 39–57.

[3] K. Adaricheva, J.B. Nation and R. Rand, Ordered direct implicational
basis of a finite closure system, Disc. Appl. Math. 161 (2013), 707–723.

[4] K.Adaricheva and T. Ninesling, Direct and binary-direct bases for one-
set updates of a closure system, manuscript; presented in poster session
of ICFCA-2018 http://icfca2017.irisa.fr/program/accepted-papers/

[5] Adaricheva K., Turan G., Sloan R. and Szorenyi B., Horn belief contrac-
tion: remainders, envelopes and computational aspect, in Proceedings of
KR-2012, Italy, 107–115.

[6] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A.I. Verkamo, Fast
discovery of association rules, Advances in Knowledge discovery and
data mining, AAAI Press, Menlo Park, California (1996), 307–328.

[7] Guillaume Bosc, Marc Plantevit, Jean-Franois Boulicaut, Moustafa Ben-
safi, and Mehdi Kaytoue, h(odor): Interactive discovery of hypotheses on
the structure-odor relationship in neuroscience, in ECML/PKDD 2016
(Demo), 2016.

[8] J.L. Balcázar, Redundancy, deduction schemes, and minimum-size bases
for association rules, Log. Meth. Comput. Sci. 6 (2010), 2:3, 1–33.

[9] Gordon Bell, Jim Gray, and Alex Szalay. Petascale computational
systems.Computer, 39(1):110–112, 2006.

IT in Industry, vol. 6, no.3, 2018 Published online 11-Sep-2018

Copyright © Oren, Justin Cabot-Miller,
Kira, J.B.Nation 2018

ISSN (Print): 2204-0595

ISSN (Online): 2203-173120

[10] Raffaele Bolla, Roberto Bruschi, Franco Davoli, and Flavio Cucchietti.
Energy efficiency in the future internet: A survey of existing approaches
and trends in energy-aware fixed network infrastructures. IEEE Commu-
nications Surveys & Tutorials, 13(2):223–244, 2011.

[11] George Bosilca, Thomas Herault, Ala Rezmerita, and Jack Dongarra.
On scalability for mpi runtime systems. In 2011 IEEE International
Conference on Cluster Computing, pages 187–195. IEEE, 2011.

[12] M. Fredman and L. Khachiyan, On the complexity of dualization of
monotone disjunctive normal forms, J. Algorithms 21 (1996), 618–628.

[13] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J
Dongarra, Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian
Barrett, Andrew Lumsdaine, et al. Open mpi: Goals, concept, and design
of a next generation mpi implementation. In European Parallel Virtual
Machine/Message Passing Interface Users Group Meeting, pages 97–104.
Springer, 2004.

[14] B. Ganter, and R.Wille, Formal concept Analysis: Mathematical Foun-
dations, Springer, 1999.

[15] E.L. Kaplan and P. Meier, Nonparametric estimation from incomplete
observations, J. Amer. Statist. Assn. 53 N282 (1958), 457–481.

[16] Jonathan Koomey, Stephen Berard, Marla Sanchez, and Henry Wong.
Implications of historical trends in the electrical efficiency of computing.
IEEE Annals of the History of Computing, 33(3):46–54, 2011.

[17] M. Kryszkiewicz, Concise representation of association rules, Pro-
ceedings of the ESF Exploratory Workshop on Pattern Detection and
Discovery, Springer-Verlag, London, UK, 92–109.

[18] K. Murakami and T. Uno, Efficient algorithms for dualizing large scale
hypergraphs, Disc. Appl. Math. 170 (2014), 83–94.

[19] J. B. Nation, G. Okimoto, T. Wenska, A. Achari, J. Mali-
gro, T. Yoshioka, and E. Zitello, A Comparative analysis of
MRNA expression for sixteen different cancers, preprint, http :
//www.math.hawaii.edu jb/lust 2017 615.pdf

[20] D. Prajapati, S. Garg and N.C.Chanhan Interesting association rule
mining with consistent and inconsistent rule detection from big sales data
in distributed environment, Future Computing and Informatics Journal 2
(2017), 19–30.

[21] O. Segal, J. Cabot-Miller, K. Adaricheva, J.B. Nation, A. Sharafudinov,
The Bases of Association Rules of High Confidence, Proceedings of
SIGPRO - 2018, Sydney, David C.Wyld et al. (Eds) pp. 39-51, 2018.

[22] Arnaud Soulet and Bruno Crmilleux, Mining constraint-based patterns
using automatic relaxation, Intell. Data Anal., 13(1):109–133, 2009.

[23] Arnaud Soulet, Chedy Rassi, Marc Plantevit, and Bruno
Cremilleux,Mining dominant patterns in the sky In IEEE 11th Int.
Conf on Data Mining (ICDM 2011), pages 655–664. IEEE, 2011.

[24] T. Rauber and G. Rünger. Parallel Programming: for Multicore and
Cluster Systems. Springer Berlin Heidelberg, 2013.

[25] The Cancer Genome Atlas Research Network, The Cancer Genome Atlas
Pan-Cancer analysis project, Nature Genetics 45 (2013), 1113–1120.

[26] Frequent Itemset Mining Dataset Repository, publicly available at http://
fimi. ua. ac.be /data/retail.dat

IT in Industry, vol. 6, no.3, 2018 Published online 11-Sep-2018

Copyright © Oren, Justin Cabot-Miller,

Kira, J.B.Nation 2018
ISSN (Print): 2204-0595
ISSN (Online): 2203-173121

