
    IT in Industry, vol. 7, no.2, 2019                                                                                                        Published online 27-Aug-2019 

 

 

 

 

Copyright © Authors   1                                                 ISSN (Print): 2204-0595 

                                               ISSN (Online): 2203-1731 

 

 

 

NUCLEAR: An Efficient Methods for Mining 

Frequent Itemsets and Generators from Closed 

Frequent Itemsets 
 

Huy Quang Pham1, 2, Duc Tran3, Ninh Bao Duong2, Philippe Fournier-Viger4, Alioune Ngom1 

 

Abstract—Frequent itemset (FI) mining is an interesting 

data mining task. Instead of directly mining the FIs from 

data it is preferred to mine only the closed frequent 

itemsets (CFIs) first and then extract the FIs for each CFI. 

However, some algorithms require the generators for each 

CFI in order to extract the FIs, leading to an extra cost. In 

this paper, we introduce an effective algorithm, called 

NUCLEAR, which can induce the FIs from the lattice of 

CFIs without the need of the generators. It can enumerate 

generators as well by similar fashion. Experimental results 

showed that NUCLEAR is effective as compared to 

previous studies, especially, the time for extracting the FIs 

is usually much smaller than that for mining the CFIs. 

 

Keywords— Association rule, minimal association rule,  

kernel and extendable set, frequent itemset, closed frequent 

itemset, mining frequent itemset from closed frequent itemset, 
NUCLEAR.  

I. INTRODUCTION 

 

SSOCIATION rule mining (ARM) is one of the most 

interesting and popular problems in data mining. It is 

widely used for decision making in retail, e-commerce, 
medicine, and many other domains. Mining frequent itemsets 

(FIs) is the first and the main step in the discovery of 

association rules (ARs). Since its first introduction in 1993 [1] 

it has attracted a lot of attention and has been extended and 

applied in various ways. For instance, some popular variations 

of the FI mining problem are to discover high utility patterns 

[2, 3], uncertain frequent patterns [2] and high utility 

association rules [2, 4]. Most algorithms for mining FIs 

partition the search space into subclasses in order to apply the 

parallel approaches to improve their performance. However, 

the performance of many parallel 
 FI mining algorithms is limited by the speed of disk accesses, 

as they repeatedly scan  the  input  database, which  can  still 

lead  to  long execution  [5],  [6]. To address  this  issue,  some 

 
1University of Windsor, Windsor, Ontario, Canada 
2University of Dalat, Dalat, Vietnam 
3Faculty of Information Technology, Ho Chi Minh City University of 

Food Industry, Vietnam 
4School of Natural Sciences and Humanities, Harbin Institute of 

Technology Shenzhen Graduate School, Shenzhen, 518055, China 

researchers proposed more efficient parallel algorithms, which 

compress the database in a frequent pattern tree and perform 

tree projections [7], [8]. Another approach which can speed up 

the FI mining process is to first mine all the closed frequent 
itemsets (CFIs) and then derive the FIs from them without the  

need of rescanning the data file. This approach is more 

efficient than mining FIs directly because the number of CFIs  

is usually much less than that of FIs (see Table IV). Charm 

[9], FPClose [7], DCI_PLUS [10] and NAFCP [6] are among 

the best algorithms for mining CFIs. In 2010, a parallel 

algorithm (PLCMQS) for mining CFIs has been proposed 

[11]. The authors of Charm proposed the CharmL algorithm 

[8], which builds the lattice of CFIs. Formal concept (i.e., 

lattice of CFIs) analysis is also another way of mining FIs as 

well as ARs [6], [12], [13].  

 
Mining FIs from the lattice of CFIs has several advantages 

over mining FIs directly from data. First, the number of CFIs 

is often much smaller than the number of FIs; therefore, this 

requires less memory. Second, each CFI can stand for an 

equivalence class of FIs having the same closure (i.e., these 

FIs shares the same set of transactions containing them); thus, 

we can develop parallel algorithms or “divide-and-conquer” 

approaches to facilitate the process of deriving FIs from CFIs. 

Third, when users want to try different minimum support 

(minsup) thresholds to find an optimal set of FIs for a certain 

downstream procedure, the cost of updating the set of CFIs 
can be much lower than mining them from scratch in a 

database. However, to extract to FIs from CFIs, the current 

algorithms requires the generators for each CFI, and mining 

them might take a significant amount of time. 

 

Contribution. In this paper, we present a method to mine 

the FIs from a lattice of CFIs without the need of the 

generators. We introduce the concepts of “kernels” and 

“extendable sets” which further partition the equivalence 

classes represented by the CFIs into smaller subclasses. Then, 

each pair of kernel and extendable set stands for a subclass of 

FIs which are supersets of the kernel and subsets of the union 
of the kernel and the extendable set. Thus, once a pair of 

kernel and extendable set are identified, enumerating FIs in 

the subclass is straightforward. Our proposed algorithm, called 

NUCLEAR, to generate kernels and extendable sets for each 

CFI is simple and efficient. Its inputs are just the largest CFIs 

A 



    IT in Industry, vol. 7, no.2, 2019                                                                                                        Published online 27-Aug-2019 

 

 

 

 

Copyright © Authors   2                                                 ISSN (Print): 2204-0595 

                                               ISSN (Online): 2203-1731 

 

 

 

those are subsets of that CFI, and the time for it to induce all 

FIs from the lattice of CFIs is significantly shorter than the 

time to construct the lattice. As the generators play an 

important role in extracting the “minimal association rules”, 

we also provi de the options for NUCLEAR to mine them by 

similar fashion. We also present a simple method, called 

NUC, that wraps CharmL and NUCLEAR to mine a lattice of 

CFIs from data and then infer the FIs from the lattice. The fact 

that NUCLEAR does not require the generators makes it more 

efficient than the approach infer FIs from CFIs and generators. 
In the comparison of NUC against dEclat [8], a well-known 

algorithm which mines FIs directly from data, NUC is faster 

when the number of FIs is much larger than the number of 

CFIs. When NUC is slower, the reason is that CharmL, the 

algorithm used to construct the lattice of CFIs from data 

before applying NUCLEAR, is already slower than dEclat. 

   

 

The rest of this paper is organized as follows. Section 2 

introduces some related concepts. Section 3 reviews the 

related works. Section 4 presents novel theoretical results that 
are the basis of the proposed algorithm, including a recurrent 

formula for generating kernels and extendable sets. Section 5 

presents the proposed NUCLEAR algorithm. Section 6 reports 

experimental results that show the efficiency of the proposed 

algorithm. Finally, a conclusion is drawn and future work is 

discussed in section 7. 

 

II. PRELIMINARIES 

 

Let consider a context (T, I, R) where I is a set of items (or 

attributes), T is a set of transactions (or objects) and R is a 
binary relation on T × I.  

 

Definition 1 (Frequent itemset). For each non-empty 

subset A of I and non-empty subset O of T, the two functions λ 

and ρ below define a Galois connection between 2T and 2I 

(reader can refer to [28] for more details): 

λ: 2T → 2I: λ(O) = {a  I | (o, a)  R, o O}, () = I 

ρ: 2I → 2T: ρ(A) = {o T | (o, a)  R, a A}, () = T. 
A is also called an itemset. 

 

Given a user-specified minimum support threshold minsup, 

such that 0 < minsup  1, the support of an itemset A is 

denoted and defined as supp(A) = |(A)| / |T|. A is said to be 

“frequent” if supp(A)  minsup.  
 

Defintion 2 (Association rule mining). Given T, minsup, 

and minconf, which are a transactional dataset, a minimum 

support threshold, and a minimum confidence threshold, 

respectively. The task of association rule mining (ARM) is to 

find all rules of the form X  Y such that supp(X  Y) ≥ 

minsup and supp(X  Y)/supp(X) ≥ minconf. supp(X  Y) is 

called the support of the rule, and supp(X  Y )/supp(X) is 
called the confidence of the rule. 

 

As (X  Y) must be frequent in order to X  Y be valid, 
identifying the frequent itemsets becomes the main task in 

ARM. 

 

Defintion 3 (Closed frequent itemset). h = λoρ in 2I is 

called the closure operator [33], and h(A) = λoρ (A) is said to 

be the closure of A. Itemset C is “closed” if and only if h(C) = 

C. C is a closed frequent itemset if it is “closed” and it is 

“frequent”. 

 

Let [C] = {A  I: h(C) = h(A)} be the set of all itemsets 
having the same closure, which is h(C), then, the itemsets in 

[C] share the same set of transactions, which is ρ(C), i.e., they 

have the same support. 

 

Let CS and CFS denote the set of all closed itemsets and the 

set of all CFIs, respectively. Then, L  (CFS, ≼A) is a lattice of 

CFIs, where ≼A is an order relation based on the  operator 
between subsets of I.   

 

Definition 4 (Generator). An itemset G is called a 

“generator” of a closed itemset C if and only if h(G) = h(C) 

and G’:   G’ G  h(G’)  h(G).  
 

For any itemset A  I, the equivalence class [A] has only 
one closed itemset, and one or more generators. 

 

Example 1. Given I = {1, 2, 3, 4, 5, 6}, T = {t1, t2, t3, t4, t5, 

t6}, and R as in the Table I. Let itemset X = {1, 4, 5}, then ρ(X) 

= {t1, t2}, supp(X) = 2/4, and λ({t1, t2}) = {1, 4, 5, 6}. Then, X 

is not a CFI since h(X) =  λoρ (X) = {1, 4, 5, 6}  X. Now, let C 
= {1, 4, 5, 6}, we have h(C) = C. Thus, C is a CFI. And, we 

have, [X] = [C] = {{1, 4}, {1, 5}, {1, 6}, {1, 4, 5}, {1, 4, 6}, 

{1, 4, 5, 6}},  in which, the sets {1, 4}, {1, 5}, {1, 6} are the 

generators of C. 
 

The lattice of CFIs mined from R for minsup = 0.25 (i.e., 

absolute minimum support = 1) is shown in Fig.1. In this 

lattice, each node (rectangle) represents a CFI and its absolute 

support, separated by a colon (“:”) and each edge links a CFI 

to the CFIs which are its largest subsets.  

 
TABLE I. THE RELATION R = T × I, WHERE I = {1, 2, 3, 4, 5, 6}, T = {T1, T2, T3, 

T4, T5, T6}. 

 

Transactions Items 

t1 1 2 3 4 5 6 

t2 1   4 5 6 

t3 1  3    

t4  2 3 4 5 6 

 

 



    IT in Industry, vol. 7, no.2, 2019                                                                                                        Published online 27-Aug-2019 

 

 

 

 

Copyright © Authors   3                                                 ISSN (Print): 2204-0595 

                                               ISSN (Online): 2203-1731 

 

 

 

 
 
 
 

 
 
 
 
 
 

Fig. 1. The lattice of CFIs mined from R with minsup = 0.25. 
 

Definition 5 (Minimal association rule). A rule X  Y is 

called “minimal” if there is no other rule A  B such that (A  

X) and (Y  B) and h(X  Y)  = h(A  B) and h(X)  = h(A). 

On can see that for any minimal association rule X  Y, X 

 Y is a closed (frequent) itemset and X is a generator. (X is 

either in [X  Y] or in [C], where C  X  Y.) [14, 15] 
 

III. RELATED WORK 

A. Mining Frequent (Closed) Itemsets 

 
In recent years, several algorithms have been proposed for 

FI mining such as dEclat, and Node-list-based algorithms [5], 

[16]-[18]. The dEclat was one of the most effective algorithms 

according to [19]. It scans a database once to generate the 

transaction sets (tidsets) for all itemsets of 1 item (1-itemset). 

Then, it applies the “diffset” strategy to enumerate all FIs 

without repeatedly scanning the database. Deng et al. [16] 

proposed a novel structure named N-list for mining FIs. The 

proposed algorithm first compresses the dataset into a PPC-

tree structure, and then, using that tree, the algorithm 

generates N-lists for each 1-itemset. Finally, the algorithm 
applies a divide-and-conquer approach to mine FIs using these 

lists. Experimental evaluation has shown that the N-list-based 

algorithm outperforms state-of-the-art FI mining algorithms 

on a variety of real and synthetic datasets. Recently, Deng and 

Lv [17] proposed an improved N-list based frequent itemset 

mining algorithm named PrePost+, which applies a novel 

pruning strategy called children-parent equivalence pruning to 

reduce the search space. Subsequently, Vo et al. [18] 

combined the N-list structure with the subsume concept to 

further increase the performance of FI mining. Recently, Deng 

[16] proposed an efficient algorithm relying on an improved 

Nodeset structure, named DiffNodesets.  
 

As defined in section II, the closure of an itemset is the set 

of items that appear in all transactions containing the itemset. 

CFIs have attracted a lot of studies as they can be used to 

partition FIs into equivalence classes. This inspires the 

development of parallel or “divide-and-conquer” approaches 

to mine FIs from CFIs without scanning the database for the 

support. However, few approaches have been proposed to 

perform this efficiently. Several researchers have studied 

retrieving FIs using the generator itemsets and eliminable 

itemsets in the equivalence classes of their closures [10], [14], 

[15], [19], [20]. For this purpose, algorithms were proposed 

that efficiently discover FIs using the lattice of CFIs, without 

performing duplicate checks, and by processing only one CFI 

at a time, that is, without considering its relationship to other 

CFIs. Generator itemsets can be mined independently or at the 

same time as CFIs. Zaki et al. [9] proposed the Minimal 

Generators algorithm to mine generators from the lattice of 

CFIs using a level-wise approach inspired by the Apriori 

algorithm. However, to identify the generators of a CFI, the 

algorithm had to scan all its subsets. Thus, the algorithm can 
be very slow. Szathmary et al. [21] proposed the Talky-G 

algorithm to mine generators from data, using an IT-tree 

structure. The algorithm uses the Charm algorithm [8], [9] to 

separately mine the CFIs and then, matches the generators 

with each CFI. Talky-G guarantees that when an itemset X is 

visited during the search, all its subsets have been already 

visited, and thus all generators that are subsets of X have 

already been found. Consequently, an itemset X is a generator 

if no already found generator is subset X and has the same 

support as X’s support. To quickly select the generators for 

that check Talky-G stores the support of visited generators in a 
hash table using the number of transactions containing each 

itemset as the hash function. This hash function is also used to 

match each CFI to its generators.  The algorithm is effective 

when minsup is high. However, the time required for finding 

generators is similar to the time for mining CFIs. GENCLOSE 

[22] is an algorithm that concurrently mines CFIs and 

generators. The authors introduced necessary and sufficient 

conditions to generate generators (k + 1)-itemsets, i.e., itemset 

containing k+1 items, using the generators of k-itemsets. 

Using these conditions, the closure of each generator can be 

extended gradually to find generators. In 2005, the CHARM 
[9] and dCHARM [8] algorithms have been proposed for 

mining CFIs using the “diffset” structure introduced in the 

dEclat algorithm. In 2012, the DBV-Miner [23] algorithm 

improved this approach by compressing the tidsets of 1-

itemsets using dynamic bit vectors. It was shown that this can 

greatly reduce the memory required for storing tidsets and 

compute the support of itemsets efficiently. Then, Sahoo et al. 

[10] proposed the DCI_PLUS algorithm for mining CFIs and 

their generators. The algorithm compresses the database using 

a BitTable structure, which is built using a single database 

scan. In [20], Tran et al. proposed the GEN_ITEMSETS 

algorithm to generate all itemsets from a lattice of CFIs and 
generators without repetitions. More recently, Le and Vo [12] 

proposed an N-list-based algorithm for mining CFIs, named 

NAFCP. The experimental evaluation of this work has shown 

that NAFCP outperforms state-of-art CFI mining algorithms in 

terms of runtime and memory usage in most cases.  

B. Lattice-based Approaches for Mining Association Rules 

 

In general, two types of lattices are considered for ARM, 

which are the frequent itemset lattice (FIL) and the closed 

{1, 2, 3, 4, 5, 6}: 1 

{2, 3, 4, 5, 6}: 2 

{3}: 3 {1}:3 {4, 5, 6}: 3 

{1, 4, 5, 6}: 2 {1, 3}: 2 



    IT in Industry, vol. 7, no.2, 2019                                                                                                        Published online 27-Aug-2019 

 

 

 

 

Copyright © Authors   4                                                 ISSN (Print): 2204-0595 

                                               ISSN (Online): 2203-1731 

 

 

 

frequent itemset lattice (CFIL) [12]. Vo and Le [13] have 

presented a lattice-based approach for building the FIL, here 

called FIL-2009. Each node of the structure used in FIL-2009 

represents an itemset X and stores a tuple (X, Tidset, Children) 

where Tidset is the list of transactions containing X and 

Children are pointers to nodes representing supersets of X. To 

mine the minimal non-redundant association rules, Vo and Le 

[24] extended the structure used by FIL-2009 (here called FIL-

2011) by adding two fields in each node indicating if a node is 

a minimal generator or a closed frequent  itemset, respectively. 
These values are determined during lattice construction. The 

structure is then used by FIL-2011 to effectively mine minimal 

non-redundant association rules. Thereafter, an efficient 

approach named PFIL was proposed, which supports 

incremental mining using the pre-large concept. It was shown 

that this approach is especially efficient for huge databases 

containing a large number of FIs [25]. The PFIL algorithm 

uses the diffset structure to quickly build a FIL. Then it uses 

the pre-large concept and diffset structure for maintaining the 

pre-large FIL.  

 
For a given dataset and a minsup threshold, building the 

CFIL is generally much faster than building the FIL because 

the number of CFIs is usually much less than that of FIs. 

CharmL [8] is an effective algorithm to build the lattice of 

CFIs. To update the lattice, researchers have proposed an 

algorithm [5] that runs efficiently in the case of large 

databases with a small number of inserted transactions.  

 

For parallel algorithms or for the survey on algorithms for 

mining FIs and ARs we refer readers to [26]-[31]. 

 

IV. THEORETICAL RESULTS 

 

In this section, we introduce theoretical results that are the 

basis of our proposed algorithm.  

 

From now on, for convenience, whenever we use the 

variables C, and/or G without condition, it implicitly means 

that: C  CS,   G  C respectively. And, let “:” stand for 

“such that”, and “,”stand for the logical operator “” in the 
logical propositions.  

 

Definition 6 (the immediately closed subsets of a closed 

itemset). Let SC = {Y CS: (Y  C)  (∄Z CS: Y  Z  C)} 
be the set of the largest closed itemsets that are subset of a 

given closed itemset C. These itemsets in SC are called the 

immediately closed subsets of C.  

Proposition 1. G  C, Y SC (G [C]  x G: x 
Y). 

Proposition 1 points out a way to find [C] by searching 
every itemset G satisfying the right-hand side of Proposition 1. 

However, it might be not efficient if we have to scan every 

subset of C.  

Proof. For all G  C and Y  SC, 

 “”: Since G  [C], we have h(G) = C. Now, assume that 

x  G (x  Y). Thus, G  Y  C  h(G)  h(Y) = Y   C. 

This leads to a contradiction: h(G)  C.  

“”: Assume that Y  SC (x  G: x  Y)  (G  [C]). 

We have: Y  SC ((h(G) = h(Y) = Y)  (h(G)  Y))  (h(G) 

 C). By the definition of SC, we have: X  C (X  CS  

Y SC: X  Y). Then, Y  SC (h(G)  Y). Thus, we have: 

Y  SC, x G (x  Y), which is a contradiction to the 
hypothesis. 

 

Corollary 1. Yk  SC, let Mk = C \ Yk, NS = |SC|, 1 k  NS, 

and M = {M1, …, MNS}. We have G [C]  Mk, x G: x  

Mk. 

Proof. We have G  [C]  Y  SC, x  G: x  Y  

Mk, x  G: x  Mk. Therefore, this corollary is proven. 

 
Definition 7 (Kernel and extendable set). Given two 

itemsets G and E those are disjoint. Let the notation [G, E] 

denote the class of all itemsets those are supersets of G and 

subsets of G + E, i.e.,  [G, E] = {X: G  X  G + E}. 
G is called the kernel and E is called the extendable set of 

the class. 

The following results provide an easy way to find the pairs 

of kernel and extendable set that can help partition [C] into 

equivalence classes. 

 

Definition 8. Let Mk = C \ Yk, Yk  SC, M = {M1,…, MNS}. 
For 1 ≤ k ≤ |SC|, let Sk = {M1,…, Mk} denotes the set of k first 

elements of M, and S0 =.  
 

An itemset G is said to “satisfy Sk” if Mi  Sk, x G: x  
Mi. Let [Sk] denote the set of all FIs that satisfies Sk, and [Sk 

]= 2C if k = 0. 
The following lemmas are obtained by Definition 8 and 

Corollary 1. 

 

Lemma 1. G  C, E  C, G  E = , 1 ≤ k ≤ |SC|,  we 
have: 

[Sk]  [Sk -1], (i.e., if G satisfies Sk, it also satisfies Sk-1). 

G  [Sk] X  [G, E], X  [Sk].  
[C] = [SNS]. 

Lemma 2. For 1 ≤ k ≤ |SC|, G*  [Sk-1], and let G = G* + 

{x}, x  C, we have:  (Mk  G*   )  (x  Mk.)  G  [Sk] 

In the first condition case (i.e., Mk  G*  ), x is not 
necessary for G to satisfy Sk since G* already satisfy Sk, 

meanwhile, in latter it is.  

 

From now on, we denote “+” (and “”) the union operator 
for two (and many, respectively) disjoint sets. Definition 9 

below lead to the idea of generating the kernel sets. 



    IT in Industry, vol. 7, no.2, 2019                                                                                                        Published online 27-Aug-2019 

 

 

 

 

Copyright © Authors   5                                                 ISSN (Print): 2204-0595 

                                               ISSN (Online): 2203-1731 

 

 

 

 

Definition 9 (k-minimal set). Given G = G*  X, and X  
Mk. G is “k-minimal” if one of the following conditions is 

satified: 

 

G* is “(k-1)-minimal”, Mk  G*  , X =  (i.e., G = G*, 
and no more item are needed for G* to satisfy Sk). 

G* is “(k-1)-minimal” Mk  G* = , and X = {x}, x  Mk} 
(i.e., x is the new item needed for G* to satisfy Sk). 

 is “0-minimal”. 
We can see that if G is “k-minimal” then G satisfies Sk. 

Cases (a), and (b) are based on Lemma 2.  

 

G is “k-minimal” does not imply that there is no subset of G 

satisfying Sk. It just implies that no prefix of G satisfies Sk if G 

is treated as a sequence of items.  
 

Here after, we assume that there exists an order over the 

items in C (e.g., alphabetic order), and every Mi is sorted in 

the increasing order. 

 

Definition 10 (A partition of [Sk] by kernels and  

 

extendable sets). Given C, and SC. Let the set Qk contain 

the pairs of kernel set and extendable set defined recurrently 

as follows: 

Q0 = {(, C)} 

Q1 = {(Gi, Ei): Gi = {xi}, xi  M1,  Ei = C\{y  M1: y ≤ x}} 

k > 1, Qk = Bk + Ck, where: 

Bk = {(G, E): (G, E)  Qk-1, G  Mk   }, 

Ck = {(G + {xi}, E\Ei): (G, E)  Qk-1, G  Mk = , Nk = 

Mk E, xi  Nk , Ei = {y  Nk: y ≤ xi}. 
In details, Bk contains pairs (G, E) in Qk-1 where G is “(k-1)-

minimal” and is also “k-minimal”, according to Definition 9.a. 

Thus, (G, E) belongs to Qk also. Meanwhile, Ck contains the 

pairs (G, E) such that G = G’ + {xi}, where G’ is “(k-1)-
minimal” but not “k-minimal”, and xi is necessary for G to 

become “k-minimal” (as Definition 9.b). 

 

Lemma 3. For all (Gi, Ei), (Gj, Ej)  Qk, i  j, 1 ≤ k ≤ |SC|, 
we have:  

a) X  [Gi, Ei]  X  [Sk]. 

b) Gi  Ei = .  

c) [Gi, Ei]  [Gj, Ej] = .  
 

In other words, Qk induces a partition of all FIs in [Sk], 

where each equivalence classes is defined by [G, E] as in 

Definition 10, with (G, E)  Qk. Furthermore, for every (G, E) 

 Qk, G is “k-minimal”.    

Theorem 1. For 0 ≤ k ≤ |SC|, {[G, E]: (G, E)  Qk} is a 
partition of [Sk], where each [G, E] is an equivalence class, 

and G is “k-minimal” 

. 

Proof. 

We’ll first prove that Theorem 1 hold with k = 0. 

Since k = 0, Q0 ={(, C)} by Definition 10.a, and [Sk] = 2C 

by Definition 8.  We have: [, C] = {X: X  C} = 2C. Since 

{[, C]} is a partition of 2C and  is “0-minimal”, let G =  
and E = C then Theorem 1 is proven for k = 0. 

 

Assume that Theorem 1 holds for any k-1, 0 < k ≤ |SC| (i.e., 

the set {[G, E]: (G, E)  Qk-1} is a partition of [Sk-1], where 
each [G, E] is an equivalence class, and G is “(k-1)-

minimal”), we will prove that Theorem 1 holds for k.  

 

By assumption, we have [Sk-1] =  [Gi, Ei], where (Gi, Ei)  
Qk-1. By Lemma 1.a, for an itemset X to be in [Sk], it must be 

in [Sk-1] 
(a). By Lemma 3.c, for all (Gi, Ei) and (Gj, Ej)  Qk-1, i 

 j, we have: [Gi, Ei]  [Gj, Ej] =  (b). From (a) and (b), we 

only need to prove that given a pair (G, E)  Qk-1, we can 
partition [G, E] into disjoint subclasses, where each subclass 

either is in the form of [G’, E’] and G’ is a “k-minimal” (i.e., 

(G’, E’)  Qk), or contains only the itemsets which do not 
satisfy Sk

 (*). 

 

If Mk  G  , then G satisfies Sk. Then, (G, E)  Qk. Then 
(*) is proved. In this case, (G, E) belongs to Bk as in Definition 

10.c, thus, it belongs to Qk 
(i)

. Now, let assume that Mk  G = 

. If Mk  E = , then for all Y  [G, E], Y does not satisfy 

Sk. Then (*) is proved (ii)
.   

 

Now, let assume that Mk  G =  and Mk  E  .  Denote 

Nk = Mk  E = {x1, .., xn}, and for 0 < i ≤ n, denote Gi = G + 

{xi} (xi  Nk), Ei = E\{xj: xj  Nk, j ≤ i}. Let U1 = {G1 + T: T  

E1} = [G1, E1], and V1 = {G + Y: Y  E \ {x1}} = [G, E1]. 

Then, X  U1 (x1  X) and Y  V1 (x1  Y). This means: 
U1 and V1 are disjoint. We can further divide V1 into two 
disjoint sets: U2 – the set of itemsets containing x2, and V2 - the 

set of itemsets not containing x2. One can see that Ei = Ei-1 \ 

{xi}, then, we have: U2 = {G2 + T: T  E2} = [G2, E1 \ { x2}] = 

[G2, E2], V2 = [G, E2], and U2 and V2 = . By the same way, 
the division process continues until we divide Vn-1 into two 

disjoint sets: Un =  [Gn, En] and Vn = [G, En]. One can see that, 

[G, E] = Vn +  [Gi, Ei]. 
 

Since Mk  G =  and En = , for all Y  Vn, Y does not 

satisfy Sk. Meanwhile, since Nk  Gi = {xi}  , for all i  n. 

This means Mk  Gi  . Thus, Gi is “k-minimal” by  

Definition 9.b and for all X  [Gi, Ei], X satisfies Sk. This 

mean (Gi, Ei) is generated as Definition 10.c then (Gi, Ei)  
Qk. Then (*) is proved. (iii) 

 

By (i), (ii), and (iii), (*) is proved, and Theorem 1 is proved. 

 



    IT in Industry, vol. 7, no.2, 2019                                                                                                        Published online 27-Aug-2019 

 

 

 

 

Copyright © Authors   6                                                 ISSN (Print): 2204-0595 

                                               ISSN (Online): 2203-1731 

 

 

 

Corollary 2. {[G, E]: (G, E)  QNS} is a partition of [C], 
where each [G, E] is an equivalence class, and G is “NS-

minimal”.  

 

Proof. This is result of Theorem 1, where k = NS, [C] = 

[Sk]. 

 

Example 2. Let consider the relation R shown in Table I and 

the lattice of CFIs mined from R with minsup = 0.25 (i.e., 

absolute minimum support = 1) shown in Fig. 1. The 

following paragraphs explain how to find all FIs in [C] for C = 
{1, 2, 3, 4, 5, 6}. 

 
 

Fig. 2. Search tree for generating the kernels and extendable sets of Q3, where 

Q3 = {(G2, E2), (G5, E5), (G6, E6), {(G6, E7)}. 
 

According to the lattice, the immediately closed subsets of 

C are Y1= {2, 3, 4, 5, 6}, Y2 = {1, 4, 5, 6} and Y3 = {1, 3}. In 

other words, SC ={Y1, Y2, Y3}. Fig. 2 presents the search tree 

that can be built, implicitly, during the process of generating 
the kernels and extendable sets using a breadth-first search. 

Here, Q1 = {(G1, E1)}, Q2 = {(G2, E2), (G3, E3)}, and Q3 = 

{(G2, E2), (G5, E5), (G6, E6), {(G6, E7)}, where Gi is a kernel 

and Ei is its corresponding extendable set. (We do not have to 

compute the pair (G4, E4), the rectangle with dash-lined 

border.) They are found by the following steps: 

 

With M1 = C \ Y1= {1}, by Definition 5.b, let G1 = {1}, E1 = 

C \ {1} = {2, 3, 4, 5, 6}) we have: Q1 = {(G1, E1)}. (Then, [S1] 

= [G1, E1], but we do not need to compute it!)  

 
Now, we will find Q2 based on (G1, E1) and M2, where M2 = 

C \ Y2 = {2, 3}). Let N2 = M2  E = {2, 3}. Using item 2 in N2 
we have G2 = G1 + {2} = {1, 2}, and E2 = E1 \ {2} = {3, 4, 5, 

6}. Using item 3 in N2 we have G3 = G1 + {3} = {1, 3}, and E3 

= E2 \ {3} = {4, 5, 6}. Then, Q2 = {(G2, E2), (G3, E3)} as nodes 

of level 2 in Fig. 2.  

 

Now, we will find Q3 based on  {(G2, E2), (G3, E3)} and M3, 

where M3 = C \ Y3 = {2, 4, 5, 6}. With (G2, E2), one can see 

that G2 satisfies S3 since M3  E2 = {2}  . Thus, (G2, E2) 

belongs to Q3. With (G3, E3), we have N3 = M3  E3 = {4, 5, 
6}. With item 4 in N3, we have G5 = G3 + {4} = {1, 3, 4}, and 

E5 = E3 \ {4}= {5, 6}. With item 5 in N3, we have G6 = G3 + 

{5} = {1, 3, 5}, and E6 = E5 \ {5} = {6}. With item 6 in N3, we 

have G7 = G3 + {6} = {1, 3, 6}, and E7 = E6 \ {6} = . Then, 

Q3 = {(G2, E2), (G5, E5), (G6, E6), {(G6, E7)} as nodes of level 

3 in Fig. 2. 

 
TABLE II. THE PARTITION OF 23 FIS IN [{1, 2, 3, 4, 5, 6}] BASED ON Q3 AS IN 

FIG. 2. 

 

 [G2, E2] [G5, E5] [G6, E6] [G7, E7] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

{{1, 2}, 

{1, 2, 3}, 

{1, 2, 3, 4}, 

{1, 2, 3, 4, 5}, 

{1, 2, 3, 4, 5, 6}, 

{1, 2, 3, 4, 6}, 

{1, 2, 3, 5}, 

{1, 2, 3, 5, 6}, 

{1, 2, 3, 6}, 

{1, 2, 4}, 

{1, 2, 4, 5}, 

{1, 2, 4, 5, 6}, 

{1, 2, 4, 6}, 

{1, 2, 5}, 

{1, 2, 5, 6}, 

{1, 2, 6}} 

{{1, 3, 4}, 

{1, 3, 4, 5}, 

{1, 3, 4, 5, 6}, 

{1, 3, 4, 6}} 

 

{{1, 3, 5}, 

{1,3, 5, 6}} 

{{1, 3, 6}} 

 

Theorem 2. Let GS be the set of all generators of C, and 

KS =  {G: (G, E)  QNS} be the set of all kernels. We have: 

GS   KS 
 

G GS  (G  KS)  (∄K KS: K  G)). 
 

Proof. By Corollary 2, QNS induce a partition of [C], where 

each [K, E] ((K, E) QNS) is an equivalence class. Then, G 

GS, (K, E) QNS: G [K, E]. This mean h(G)  =  h(K) = C. 

Then, by Definition 4, G = K since X [K, E], K  X. 

Thus,G GS, K KS: G = K. Or, GS   KS. This means 
Theorem 2.a is proven. As a consequence, a kernel is a 

generator if an only if it is not a superset of any other kernel, 

i.e., Theorem 2.a is proven. 

 

V. OUR ALGORITHMS 
 

In this section, based on Definition 10, Theorem 1, and 

Theorem 2 we present NUCLEAR (Fig. 4), the algorithm for 

enumerating the FIs/generators from a lattice of CFIs, for all 

closed frequent itemset. There are options for it to find only 

the generators, or both FIs and generators. The NUC 

algorithm, in Fig. 3, wraps NUCLEAR to mine FIs/generators 

from data (files). It uses a certain algorithm (e.g., CharmL) to 

construct the lattice of CFIs from data which will be used as 

the input for NUCLEAR. NUCLEAR will call 

FindKandE_BFS (Fig. 5) to enumerate the pairs of kernels and 
extendable sets for each closed frequent itemset, in breadth-

first-search manner. Depending on the ouput type(s) required, 

the FIs and/or the generators will be enumerated accordingly. 

 

 



    IT in Industry, vol. 7, no.2, 2019                                                                                                        Published online 27-Aug-2019 

 

 

 

 

Copyright © Authors   7                                                 ISSN (Print): 2204-0595 

                                               ISSN (Online): 2203-1731 

 

 

 

Input:  D: the transactional dataset,  
 minsup: the minimum support threshold, 
 returnFIs: “true” to return all FIs for each closed frequent 

itemset, 
 returnGenerators: “true” to return all generators for each 

closed frequent itemset. 
Output: all FIs/generators satisfying minsup. 

1 L = The lattice of CFIs mined from D for the given 

minsup (using a certain algorithm, e.g., CharmL). 
2 return NUCLEAR (L, returnFIs, returnGenerators) 

Fig. 3. The NUC algorithm. 

 

 
 

Fig. 4. The NUCLEAR algorithm. 
 

Input:   k: a positive interger,   

Qk-1: The set of pairs of kernel and extendable set generated as 

Definition 10. 

Output: Q|NS| all pairs of kernel and extendable of the current closed 

frequent itemset C. 

1 if (k > |Sc|) return Qk-1 

2 else   

3  Qk = ; 

4  for each (G, E) in Qk-1 

5    if(Mk  G  ) then Qk = Qk + {(G, E)}; 

6    else 

7    Ei = E; 

8   for each x in Mk  E 

9   Ei = Ei\{x}; 

1

0 
  Qk = Qk + {(G + {x}, Ei)}; 

1

1 

 FindKandE_BFS (k+1, Qk); 

 

Fig. 5 The FindKandE_BFS algorithm. 

 

For each immediate frequent closed subset C in lattice L, 

the variables G and E are initialized as G =  and E = C. If SC 

= , the class [C] is all non-empty subsets of C. Otherwise, 
the recursive FindKandE_BFS algorithm is called (Fig. 4). 

 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 

 
TABLE III. CHARACTERISTICS OF THE DATASETS. 

 

Database Abbreviation #Items #Transactions #Average 

Chess CH 75 3,196 37 

Connect CO 129 67,557 43 

Mushroom MU 119 8,124 23 

Retail RE 16,469 88,162 10.3 

T40I10100K T4 1,000 100,000 40 

C20d10k C2 192 10,000 20 

C73d10k C7 1,592 10,000 73 

 

In this section, we compare the running time (in seconds) 

for mining all FIs from data of three frameworks: dEclat, 

GenIT, and NUC. dEclat mines FIs directly from data. GenIT 

is not an algorithm but a combination of algorithms of some 

previous studies, which is slightly different to our proposed 

approach. In GenIT, we first use CharmL algorithm to mine 

the lattice of CFIs from data, then, use Minimal Generator 

algorithm to mine the generators from the CFIs before 

applying GEN_ITEMSETS to extract FIs from the CFIs and 
the generators by FIs. In NUC, we also use CharmL algorithm 

to mine the lattice of CFIs from data before applying 

NUCLEAR to generate the kernels and extendable sets. The 

FIs are inferred during this process. Thus, to be fair, the total 

times reported for NUC includes the time of CharmL and the 

time of NUCLEAR; whereas, that for GenIT includes the time 

of CharmL, the time of Minimal Generator, and the time of 

GEN_ITEMSETS. These algorithms have been executed on a 

Pentium (R) Dual-Core CPU E6500 @ 2.93GHz, equipped 

with 1.94GB of RAM, running the Microsoft Windows XP 

Version 2002 operating system. 

 
Seven datasets (available at [32], [33] have been used to 

compare the frameworks under different minsup threshold 

values. Information about the datasets is given in Table III.  

 

The number of patterns can be mined from each dataset are 

shown in Table IV (Appendix). Table V in (Appendix) shows 

the overall runtime for NUC, GenIT, and dEclat in the 

columns of the corresponding names, and other details. The 

visual comparisons of the three approaches are also given in 

Fig. 5 – Fig.12.  

In our experiment, NUC is faster than dEclat when testing 
on the Mushroom and Connect datasets (Fig. 9, Fig.10). The 



    IT in Industry, vol. 7, no.2, 2019                                                                                                        Published online 27-Aug-2019 

 

 

 

 

Copyright © Authors   8                                                 ISSN (Print): 2204-0595 

                                               ISSN (Online): 2203-1731 

 

 

 

reasons are: (1) the time for CharmL (column tCS) is smaller 

than that of dEclat because the number of CFIs in a dataset is 

much less than that of FIs, and (2) the time for NUCLEAR 

(column tNNI) is also smaller than that of dEclat. On the other 

datasets, NUC is slower than dEclat. However, the main 

reason is just CharmL is slower dEclat, whereas, the time for 

NUCLEAR is significantly small as compared to those of 

CharmL and dEclat. 

 

From Table V, we can estimate that NUC is about 1.25 time 
faster than GenIT. To clearer see the advantages of 

NUCLEAR, we break down the runtime of GenIT and NUC 

into the times for different stages including:  

 

 Constructing the lattice of CFIs by CharmL (column tCS), 

 Mining generators by Minimal Generator (column tG), 

 Extracting FIs from the CFIs and the generators by 

GEN_ITEMSETS (column tGI), 

 Generating kernels and extendable sets from the lattice of 

CFIs by NUCLEAR (column tN), 

 Enumerating the FIs from the kernels and extendable sets 
by NUCLEAR (column tNI).  

 

In comparing tG against tN, and tGI against tNI, one can 

see that the runtime of Minimal Generator to mine the 

generators is about double that of NUCLEAR for generating 

the kernels and extendable sets (tN), and the time for 

GEN_ITEMSETS (tGI) is similarly about twice as that of 

NUCLEAR for extracting FIs. These make NUCLEAR more 

efficient than GenIT in extracting the intermediate and the 

final results. 

 
The time for minings FIs from the lattice using NUCLEAR 

(tNNI) is mostly much smaller than that for constructing the 

lattice of CFIs (tCS) using the CharmL algorithm. Thus, in the 

applications where users have to try different minsup 

thresholds to find an optimal set of FIs for a certain 

downstream process, our approach might be more efficient 

than repeatedly mining FIs from scratch like dEclat. Because, 

the lattice can be constructed only once for a small enough 

minsup, the cost for updating/filtering the lattice is expected to 

be small, and after that NUCLEAR can be used to query FIs 

many times. For example, in bioinformatics, we can use NUC 
to conduct a feature selection which shrinks the high 

dimensional data to a smaller one before applying a machine 

learning algorithm. The feature selection might have to be 

conducted many times to obtain an optimal set of features. 

 

From Table IV, we can see that the number of pairs of 

kernels and extendable sets (#N) is almost similar to the 

number of generators (#G) and just slightly bigger than the 

number of CFIs (#C). The lowest value of #C/#N is 0.55 

means that there are no more than two kernels per CFI. Thus, 

identifying them as demonstrated in Example 2 will be fast. 

As there are only a few kernels in each CFI and the number of 

generators is almost similar to the number of kernels (#N/#G 

is almost equal to 1), extracting the generators among the 

kernels would be very quick. Furthermore, we do not need to 

store the kernels and extendable sets but just the CFIs. 

Because, for each CFI, we only need the largest CFIs those are 

its subsets to generate the kernels, extendable sets, and FIs, 

and this can be done quickly. Thus, using NUCLEAR can 

save a lot of memory as well. 
 

 
 

Fig. 6 Time execution comparison on C20d10k. 

 

 
 

Fig. 7 Time execution comparison on C73d10k. 

 

 

0 

10 

20 

30 

40 

0.8 0.85 0.9 0.95 1 
ti

m
e(

s)
 

minsup 

Runtime on C2 (C20d10k) 

tCS 

tNNI 

GenIT 

dEclat 

NUC 

0 

50 

100 

150 

200 

250 

50 55 60 65 70 

ti
m

e(
s)

 

minsup 

Runtime on C7 (C73d10k) 

tCS 

tNNI 

GenIT 

dEclat 

NUC 



    IT in Industry, vol. 7, no.2, 2019                                                                                                        Published online 27-Aug-2019 

 

 

 

 

Copyright © Authors   9                                                 ISSN (Print): 2204-0595 

                                               ISSN (Online): 2203-1731 

 

 

 

 
 

Fig. 8 Comparison of time on Chess. 

 

 

 
 

Fig. 9 Comparison of time on Connect. 

 

 

 
 

Fig. 10 Comparison of time on Mushroom. 

 
 

Fig. 11 Time execution comparison on Retail. 
 

 
 

Fig. 12 Time execution comparison on T40I10100K. 

 

VII. CONCLUSIONS AND FUTURE WORK 

 

Mining FIs from the lattice of CFIs is a reasonable approach 

since the number of CFIs is often much smaller than the 

number of FIs. Thus, CFIs can be mined with a limited 
amount of memory. Especially, because there are parallel and 

distributed algorithms to mine CFIs for large or high 

dimensional data, the CFIs are easier to be available than the 

FIs. Besides, CFIs can be used to partition FIs into 

equivalence classes that can be used to efficiently process FIs 

in parallel. This approach is interesting as the lattice of CFIs 

can be mined once for a minimum support threshold that is 

small enough and used many times later to derive FIs for 

different minimum support thresholds.  

 

In this paper, we presented a recurrent formula for 
generating the kernels and extendable sets for a closed 

frequent itemset, without the need of the generators. They are 

simple enough so that users can easily and quickly derive the 

FIs and/or the generators from them, and we even don’t need 

to store them. Thank for that, NUC, the approach using 

NUCLEAR to mine the FIs from the lattice of CFIs is more 

efficient than GEN_IT, a similar approach that requires the 

0 

50 

100 

150 

50 60 70 

ti
m

e(
s)

 

minsup 

Runtime on Ch (Chess) 

tCS 

tNNI 

GenIT 

dEclat 

NUC 

0 

20 

40 

60 

80 

100 

60 70 75 80 

ti
m

e(
s)

 

minsup 

Runtime on Co (Connect) 

tCS 

tNNI 

GenIT 

dEclat 

NUC 

0 

50 

100 

2 3 4 5 

ti
m

e(
s)

 

minsup 

Runtime on M (Mushroom) 

tCS 

tNNI 

GenIT 

dEclat 

NUC 

0 

20 

40 

60 

0.05 0.04 0.03 0.02 0.01 

ti
m

e(
s)

 

minsup 

Runtime on RT (Retail) 

tCS 

tNNI 

GenIT 

dEclat 

NUC 

0 

200 

400 

600 

1 0.95 0.9 0.85 0.8 

ti
m

e(
s)

 

minsup 

Runtime on T4 (T40I10100K) 

tCS 

tNNI 

GenIT 

dEclat 

NUC 



    IT in Industry, vol. 7, no.2, 2019                                                                                                        Published online 27-Aug-2019 

 

 

 

 

Copyright © Authors   10                                                 ISSN (Print): 2204-0595 

                                               ISSN (Online): 2203-1731 

 

 

 

generators for mining FIs from the lattice of CFIs. NUC is 

slower than dEclat in the major cases, but it’s just mainly 

because the construction of the lattice by CharmL takes more 

time than dEclat; whereas, the time for obtaining the FIs from 

the lattice by NUCLEAR is still considerably small.  

 

In the future, the methods for updating the FIs when minsup 

is changed will be studied for the case that lattice can be 

constructed only once and reuse many times. We would like to 

test our approach on the real data, such as bioinformatics data, 

where there are a lot more items/features than samples. In such 

case, probably, FIs cannot be mined directly from data within 

a reasonable amount of time while our approach with or 

without parallel implementation can. 

 

APPENDIX 

TABLE IV. NUMBER OF PATTERNS EXTRACTED FROM DATASETS. 
 

Data minsup #FS #CS #G #N #FS/#CS #CS/#N #N/#G 

C2 0.8 8165081 99785 122031 122359 81.83 0.82 1.00 

C2 0.85 7525408 95533 116126 116416 78.77 0.82 1.00 

C2 0.9 7017040 92087 111297 111564 76.2 0.83 1.00 

C2 0.95 6525355 88695 106575 106813 73.57 0.83 1.00 

C2 1 6092449 85608 102316 102519 71.17 0.84 1.00 

C7 50 
2569643

9 
482902 765450 765449 53.21 

0.63 1.00 

C7 55 9698268 222253 346029 346028 43.64 0.64 1.00 

C7 60 4188627 108428 166918 166917 38.63 0.65 1.00 

C7 65 1472818 47491 71875 71874 31.01 0.66 1.00 

C7 70 543081 19501 29008 29007 27.85 0.67 1.00 

CH 50 900355 369450 372603 372603 2.44 0.99 1.00 

CH 60 156551 98392 98418 98418 1.59 1.00 1.00 

CH 70 24997 23991 23991 23991 1.04 1.00 1.00 

CO 60 
2118445

4 
68349 68349 68349 309.95 

1.00 1.00 

CO 70 4093971 35875 35875 35875 114.12 1.00 1.00 

CO 75 1561212 24346 24346 24346 64.13 1.00 1.00 

CO 80 518875 15107 15107 15107 34.35 1.00 1.00 

MU 2 
2359664

9 
31767 57728 82483 742.8 

0.55 1.43 

MU 3 9934877 22229 37972 52165 446.93 0.59 1.37 

MU 4 4324745 16565 26984 35597 261.08 0.61 1.32 

MU 5 3727905 12854 21160 27801 290.02 0.61 1.31 

RE 0.006 975063 504142 532342 542565 1.93 0.95 1.02 

RE 0.008 480620 286435 293235 294709 1.68 0.98 1.01 

RE 0.01 240852 189077 191265 191650 1.27 0.99 1.00 

RE 0.02 67186 65301 65329 65330 1.03 1.00 1.00 

RE 0.03 40153 39552 39552 39552 1.02 1.00 1.00 

RE 0.04 26925 26666 26666 26666 1.01 1.00 1.00 

RE 0.05 19836 19698 19698 19698 1.01 1.00 1.00 

T4 0.8 480531 480531 480531 480531 1 1.00 1.00 



    IT in Industry, vol. 7, no.2, 2019                                                                                                        Published online 27-Aug-2019 

 

 

 

 

Copyright © Authors   11                                                 ISSN (Print): 2204-0595 

                                               ISSN (Online): 2203-1731 

 

 

 

T4 0.85 432211 432211 432211 432211 1 1.00 1.00 

T4 0.9 350323 350323 350323 350323 1 1.00 1.00 

T4 0.95 210610 210610 210610 210610 1 1.00 1.00 

T4 1 66278 66278 66278 66278 1 1.00 1.00 

Note: #FS: the number of FIs; #CS: the number of CFIs; #G: the number of generators; #N: the number of pairs of 

kernels and extendable sets. 

 

TABLE V. RUNTIMES OF THE FRAMEWORKS AND OF THE BREAKDOWN PROCESS. 
 

Data 
minsu

p 
tCS tG tN tNI tNNI tGI GenIT dEclat NUC 

C2 0.800 14.8 3.6 2.4 6.1 8.5 14.1 32.5 24.6 23.3 

C2 0.850 13.9 3.4 2.3 5.3 7.7 12.8 30.1 22.6 21.6 

C2 0.900 13.1 3.3 2.2 5.0 7.2 11.9 28.3 21.2 20.3 

C2 0.950 12.5 3.2 2.3 4.6 6.9 11.2 26.9 19.6 19.5 

C2 1.000 12.0 3.1 1.9 3.9 5.8 10.3 25.4 18.4 17.8 

C7 50.000 192.5 33.3 23.6 16.3 40.0 outM outM 88.1 232.4 

C7 55.000 58.9 14.0 9.2 5.4 14.6 19.4 92.2 33.2 73.5 

C7 60.000 20.0 6.3 3.9 2.0 5.9 7.8 34.1 14.6 25.9 

C7 65.000 6.5 2.4 1.5 0.7 2.2 2.7 11.6 5.3 8.7 

C7 70.000 2.3 0.9 0.4 0.4 0.8 0.9 4.1 2.1 3.1 

Ch 50.000 109.3 17.4 5.5 0.6 6.1 3.0 129.6 5.0 115.4 

Ch 60.000 14.3 3.9 1.3 0.1 1.5 0.6 18.7 1.1 15.8 

Ch 70.000 1.8 0.8 0.3 0.0 0.3 0.1 2.7 0.3 2.1 

Co 60.000 35.2 2.4 1.8 16.5 18.3 outM outM 95.0 53.4 

Co 70.000 13.3 1.2 0.9 2.9 3.8 7.3 21.8 20.5 17.1 

Co 75.000 7.9 0.8 0.5 0.9 1.4 2.6 11.3 8.7 9.4 

Co 80.000 4.7 0.6 0.3 0.3 0.6 0.8 6.1 3.5 5.3 

M 2.000 3.8 2.3 1.1 18.3 19.3 outM outM 71.2 23.1 

M 3.000 2.7 1.3 0.4 8.0 8.4 28.2 32.1 30.1 11.1 

M 4.000 1.9 0.8 0.5 3.2 3.7 13.8 16.5 13.3 5.6 

M 5.000 1.6 0.9 0.3 2.9 3.2 11.1 13.7 11.3 4.8 

RT 0.006 101.2 9.8 4.9 0.8 5.7 7.8 118.8 60.6 106.9 

RT 0.008 57.2 5.2 2.4 0.3 2.7 1.2 63.6 27.2 59.8 

RT 0.010 39.0 3.1 1.5 0.1 1.6 0.5 42.7 16.5 40.6 

RT 0.020 17.1 1.1 0.4 0.0 0.5 0.1 18.3 5.7 17.6 

RT 0.030 12.0 0.6 0.2 0.0 0.3 0.1 12.8 3.8 12.3 

RT 0.040 9.0 0.4 0.2 0.0 0.2 0.1 9.4 2.8 9.2 

RT 0.050 7.2 0.4 0.1 0.0 0.2 0.0 7.6 2.2 7.4 



    IT in Industry, vol. 7, no.2, 2019                                                                                                        Published online 27-Aug-2019 

 

 

 

 

Copyright © Authors   12                                                 ISSN (Print): 2204-0595 

                                               ISSN (Online): 2203-1731 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

ACKNOWLEDGMENT 

 

This work has been partially supported by the Natural 

Sciences and Engineering Research Council of Canada 

(NSERC). 

 

The authors would like to thank Tran N.A., Duong V.H., 
and the co-authors of [14], [15], [20] for providing us the code 

of GEN_ITEMSETS algorithm for our experiments.  

 

REFERENCES 

 
[1] Agrawal R., Imielinski T., Swami N, “Mining association rules between 

sets of items in large databases”, in ACM SIGMOID, 1993, pp. 207-216. 

[2] Mai T., Vo B., Nguyen L.T.T. A lattice-based approach for mining high 

utility association rules. Information Sciences, 399, 2017, pp.81-97. 

[3] Yun U., Lee G., Yoon E, “Efficient high utility pattern mining for 

establishing manufacturing plans with sliding window control”, IEEE 

Transactions on Industrial Electronics, 64(9), 2017, pp.7239 – 7249. 

[4] Mai T., Nguyen L.T.T, “An Efficient Approach for Mining Closed High 

Utility Itemsets and Generators. Journal of Information and 

Telecommunication”, 1(3), 2017, pp.193-207. 

[5] Bundit, M., Nunnapus, B., Arnon, R., Athasit, S., Putchong, U., “Parallel 

association rule mining based on FI-Growth algorithm”, in ICPDS’07, 

2007, pp. 1-8. 

[6] Lakhal, L., and Stumme, G., “Efficient mining of association rules based 

on formal concept analysis”, in FCA’05, 2005, pp. 180-195. 

[7] Grahne G., Zhu J., “Fast algorithms for frequent itemset mining using 

FP-Trees”, IEEE Transactions on Knowledge and Data Engineering, 

17(10), 2005, pp.1347-1362. 

[8] Zaki, M.J. and Hsiao, C.J., “Efficient algorithms for mining closed 

itemsets and their lattice structure”, IEEE Transactions on Knowledge 

and Data Engineering, 17(4), 2005, pp.462-478. 

[9] Zaki, M.J., “Mining non-redundant association rules”. Data Mining and 

Knowledge Discovery, 9(3), 2004, pp.223-248. 

[10] Sahoo, J., Das, A. K., Goswami, A., “An effective association rule 

mining scheme using a new generic basis”. Knowledge and Information 

Systems, 43(1), 2015, pp.127–156. 

[11] Negrevergne, B., Termier, A., Méhaut, J., Uno, T., “Discovering Closed 

Frequent Itemsets on Multicore: Parallelizing Computations and 

Optimizing Memory Accesses”, International Conference on High 

Performance Computing and Simulation (HPCS), 2010, pp. 521-528. 

 

 

 

 

 

 

 

 

 

 

 

 

 

[12] Le T., Vo B., “The Lattice-based approaches for mining association 

rules: a review”. WIREs Data Mining and Knowledge Discovery, 6(4), 

2016, pp.140-151. 

[13] Vo B., Le B., “Mining traditional association rules using frequent 

itemsets lattice”, in CIE’09, 2009, pp. 1401–1406. 

[14] Tran N.A., Tran C.T., Le H.B., “Structures of association rule set” 

in ACIIDS’12, 2012, pp. 361-370. 

[15] Truong C.T., Tran N.A., “tructure of set of association rules based on 

concept lattice”, in ACIIDS’10, 2010, pp. 217-227. 

[16] Deng Z.H., “DiffNodesets: An efficient structure for fast mining 

frequent itemsets”, Applied Soft Computing, 41, 2016, pp.214-223. 

[17] Deng Z.H., Lv S.L., “PrePost+: An efficient N-lists-based algorithm for 

mining frequent itemsets via Children-Parent Equivalence 

pruning”, Expert Systems with Applications, 42(13), 2015, pp.5424-

5432. 

[18] Vo B., Le T., Coenen F., Hong T.P., “Mining frequent itemsets using the 

N-list and subsume concepts”, International Journal of Machine 

Learning and Cybernetics, 7(2), 2016, pp.253-265.  

[19] Goethals, B., and Zaki, M., “FIMI '03 Workshop on Frequent Itemset 

Mining Implementations”, 2003, 

http://www.cs.rpi.edu/~zaki/PaperDir/FIMI03.pdf. 

[20] Tran N.A., Duong V.H., Tran C.T., Le H.B, “Efficient algorithms for 

mining frequent itemsets with constraint”, in KSE’11, 2011, pp. 19-25. 

[21] Szathmary, L., Valtchev, P., Napoli, A., Godin, R., “Efficient vertical 

mining of frequent closures and generators”, in Advances in Intelligent 

Data Analysis VIII, Springer Berlin Heidelberg, 2009, pp. 393-404. 

[22] Anh N. T., Tin C.T., and Bac L.H., “An approach for mining 

concurrently closed itemsets and generators”, in ICCSAMA’13, 2013, 

pp.355–366. 

[23] Vo B., Hong T.P., Le B., “DBV-Miner: A dynamic Bit-Vector approach 

for fast mining closed frequent  itemsets”, Expert Systems with 

ApplIcations, 39(8), 2012, pp.7196-7206. 

[24] Vo B., Le B., “nterestingness measures for association rules: 

Combination between lattice and hash tables”, Expert Systems with 

Applications, 38(9), 2011, pp.11630-11640. 

[25] Vo B., Le T., Hong T.P., Le, B., “An effective approach for maintenance 

of pre-large-based frequent-itemset lattice in incremental mining”, 

Applied Intelligence, 41(3), 2014, pp.759-775. 

[26] Agrawal R., Shafer J.C., “Parallel mining of association rules”. IEEE 

Transactions on Knowledge and Data Engineering, 8(6), 1996, pp.962-

969.  

[27] Han E., Karypis G., and Kumar V., “Scalable parallel data mining for 

association rules”, in ACM SIGMOD’97, 1997, pp. 277-288.  

T4 0.800 427.7 28.9 7.4 0.3 7.7 1.4 458.0 41.2 435.4 

T4 0.850 372.0 24.6 5.9 0.2 6.1 1.3 397.9 35.2 378.2 

T4 0.900 289.2 19.3 5.3 0.2 5.5 1.3 309.8 29.9 294.7 

T4 0.950 120.8 9.7 2.8 0.1 2.8 0.6 131.1 25.2 123.6 

T4 1.000 75.4 1.9 0.6 0.0 0.6 0.1 77.4 21.1 76.0 

Note: tCS: time to find CFIs using CharmL; tG: time to find the generators using Minimal Generator; tN: time to 
generate kernels and extendable sets by NUCLEAR; tNI: time to enumerate FIs from kernels and extendable sets by 
NUCLEAR; tNNI: time to find FIs from lattice of CFIs, which is the sum of tN and tNI; tGI: time to generate FIs 
based on CFIs and generators using GEN_ITEMSETS; NUC: time to find FIs from data using CharmL and 
NUCLEAR; GenIT: time to find FIs using CharmL, Minimal Generator, and GEN_ITEMSETS; dEclat: time to find 
FIs from data using dElat. outM: out of memory. 

http://dblp.uni-trier.de/pers/hd/c/Coenen:Frans
http://dblp.uni-trier.de/pers/hd/h/Hong:Tzung=Pei


    IT in Industry, vol. 7, no.2, 2019                                                                                                        Published online 27-Aug-2019 

 

 

 

 

Copyright © Authors   13                                                 ISSN (Print): 2204-0595 

                                               ISSN (Online): 2203-1731 
 

 

 

[28] Zaïane, O.R., El-Hajj, M., and Lu, P., “Fast parallel association rule 

mining without candidacy generation”, in ICDM’01, 2001, pp. 665-668.  

[29] Pasquier N., Taouil R., Bastide Y., Stumme G., and Lakhal L., 

“Generating a condensed representation for association rules,” J. of 

Intelligent Information Systems, vol. 24, no. 1, 2005, pp. 29-60. 

[30] Ai, D., Pan, H., Li, X., Gao, Y., & He, D., “Association rule mining 

algorithms on high-dimensional datasets”. Artificial Life and 

Robotics, 23(3), 2018, pp.420-427.  

[31] Fournier-Viger P., Lin J.C.W.,  Vo B., Truong T.C., Zhang J., Le H.B. 

“A survey of itemset mining”. WIREs Data Mining and Knowledge 

Discovery, 7(4), 2017, e1207. 

[32] http://fimi.ua.ac.be/data. 

[33] http://coron.loria.fr/site/downloads_datasets.php. 

http://dblp.uni-trier.de/pers/hd/f/Fournier=Viger:Philippe
http://dblp.uni-trier.de/pers/hd/l/Lin:Jerry_Chun=Wei
http://dblp.uni-trier.de/pers/hd/t/Truong:Tin_Chi
http://dblp.uni-trier.de/pers/hd/z/Zhang:Ji
http://dblp.uni-trier.de/pers/hd/l/Le:Hoai_Bac
http://fimi.ua.ac.be/data
http://coron.loria.fr/site/downloads_datasets.php

