
IT in Industry, vol. 2, no. 1, 2014  Published online 8-Apr-2014 

 

Copyright © Authors 6  

 

A New Architecture for Games and 

Simulations Using GPUs 
 

Mark Joselli 

Escola Politécnica 

Pontifícia Universidade Católica do Paraná - PUCPR 

Paraná, Brazil 

mark.joselli@pucpr.br 

Cristina Nader Vasconcelos, Esteban Clua 

MediaLab, IC-UFF 

Brazil

 

 
Abstract—Multi-thread architectures are the current trends 

for both PCs (multi-core CPUs and GPUs) and game consoles 

such as the Microsoft Xbox 360 and Sony Playstation 3. GPUs 

(Graphics Processing Units) have evolved into extremely 

powerful and flexible processors, allowing its use for processing 

different data. This advantage can be used in game development 

to optimize the game loop. As reported in the literature, GPGPUs 

have been used in processing some steps of the game loop, while 

most of the game logic is still processed by the CPU. This 

proposal differs by presenting an architecture designed to 

process practically the entire game loop using the GPU. Two test 

cases, a crowd simulation and a 2D game shooter prototype 

called GpuWars, are presented to illustrate the proposed 

architecture. 

Keywords—Digital Games, Game Architecture, GPGPU, Game 

Physics, Game AI, Flocking Boids 

I.  INTRODUCTION 

The increasing levels of realism in digital games depend 
not only on the enhancement of modeling and rendering 
effects, but also on the improvement of different aspects such 
as animation, artificial intelligence of the characters and 
physics simulation. 

Multi-thread architectures on PCs are becoming more and 
more popular with the development of multi-core processors 
and the new GPU architectures that can be used for generic 
processing. In addition, top of the line video game systems, like 
the Microsoft Xbox 360 and the Sony Playstation 3, feature 
multi-cores processors. Therefore, game architectures have to 
make their tasks parallel, demanding the adoption of concepts 
from parallel systems in order to take full advantage of the 
hardware. This work presents a game architecture that has been 
developed so that most of its tasks are executed in parallel, and 
the sequential execution used is kept to a minimum. 

The development of programmable GPUs has opened new 
possibilities for general-purpose computation (GPGPU), which 
can be used, for instance, to enhance the level of realism in 
virtual simulations. Some examples in GPGPU that address 
these issues include Quantum Monte Carlos [1], finite state 
machines [2] and ray casting [3]. 

Games are interactive real-time systems, similar to 
multimedia applications, they have time constraints to execute 

its tasks in order to present to end users the results properly. In 
general, the main loop of a game falls into three categories:  

(1) data acquisition, which gets data from user input, 
and can only be executed by the CPU;  

(2) data processing, where the game logic is processed, 
and can be processed by the CPU or the GPU (with 
the corrective adaptation); and  

(3) data presentation, where the results are presented to 
the end user though images and audio, which is 
processed by the GPU (images) and by the CPU 
(audio).  

The main contribution of this work is an architecture model 
and its implementation that processes the entire game logic 
using the GPU. 

Several games and previous works used GPGPU to process 
some selected subtasks on the GPU, while the remaining tasks 
are processed on the CPU. Such processing partition is 
frequently pointed out as the bottleneck in these simulations, 
because it may induce several expensive data transfers between 
the CPU and GPU [4]. This work implements all the methods 
of the game entirely on the GPU with the use of a new GPGPU 
architecture, keeping the GPU-CPU communication to a 
minimum. This work is particularly important as it proposes a 
new paradigm that can be used in GPUs and video games 
(Xbox 360 and Playstation 3), and also in future CPU 
architectures [5], where massively cores are expected to be 
available. 

This paper is organized as follows: Section 2 presents a set 
of GPGPU concepts. Section 3 presents some related works on 
GPGPU that can be applied to games. Section 4 presents the 
architecture and section 5 presents the physics aspects of the 
architecture. Section 6 presents the game logic aspects of the 
architecture. Section 7 and 8 present the two test cases, a crowd 
simulation and the GpuWar game, respectively. Finally, 
Section 9 presents the conclusions and future works. 

II. GPGPU 

GPUs are powerful processors originally dedicated to 
graphics computation. They are composed of several parallel 
processors, achieving much better performance than modern 
CPUs in a number of application scenarios. An nVidia 8800 



IT in Industry, vol. 2, no. 1, 2014  Published online 8-Apr-2014 

 

Copyright © Authors 7  

 

Ultra [6], for instance, can sustain a measured 384 GFLOPS/s 
against 35.3 GFLOPS/s for the 2.6 Ghz dual-core Intel Xeon 
5150 [7].  

The GPU architectures have been specially designed for 
processing tasks that require high arithmetic rates and data 
bandwidths. Because of the SIMD parallel architecture of 
GPUs, the development of this kind of applications requires a 
different programming paradigm than the traditional CPU 
sequential programming model. As an example, the nVidia 
GeForce 9800 GX2 [8] has 256 unified stream processors. In 
order to take advantage of the GPU processing power in a 
game, the developer needs to adapt the game tasks to this kind 
of parallel paradigm, like the architecture presented in this 
paper. 

nVidia and AMD/ATI have implemented unified 
architectures in their GPUs. Each of them is associated with a 
specific language. nVidia has developed CUDA (Compute 
Unified Device Architecture) [9] and AMD has developed 
CAL (Compute Abstraction Layer) [10]. One main advantage 
of these languages is that they allow the use of the GPU in a 
more flexible way (both languages are based on the C 
language) without some of the traditional shader language 
limitations, such as scatter memory operations, i.e. indexed 
write array operations, and offer other features that are not even 
implemented in those languages, such as integer data operands 
like bit-wise logical operations AND, OR, XOR, NOT and bit-
shifts [11]. Nevertheless, the disadvantage of these software 
architectures is that they are vendor specific, i.e., CUDA only 
works on nVidia and CAL only works on AMD/ATI cards. In 
order to have GPGPU programs that work on both GPUs it is 
necessary to implement them in shader languages like GLSL 
(OpenGL Shading Language), HLSL (High Level Shader 
Language) or CG (C for Graphics) with all the vertex and pixel 
shader limitations and idiosyncrasies. According to the 
vendors, in the near future it will be possible to use OpenCL 
(Open Computing Language) [12], which is available for both 
nVidia and AMD graphics cards. 

The GPGPU is getting more and more common and it is 
being applied in the geologic area [13], the medical area [14] 
and in computer vision [15]. The websites from CUDA [16] 
and gpgpu.org [17] show the latest development in the field. 

III. RELATED WORK 

There are a lot of GPGPU applications in many fields. In 
the field of games GPGPU has been mostly concentrated in 
game physics. Game physics using GPU is a field of potential, 
and many previous works have achieved considerable speedup 
by moving the physics calculations from the CPU to the GPU. 
All the major physics engines for games available in the market 
had made, or are making, attempts to use the GPU to process 
its calculations. The work of Green [18] described an 
implementation on the GPU of some methods of the 
commercial physics engine called Havok FX, which was 
constructed to be a GPGPU version of Havok Physics [19]. 
The Havok FX was discontinued when Havok was bought by 
Intel, but there are rumors that it will be continued with the 
release of Intel new architecture for multi-core processing [20]. 
Several other examples can be found in the literature. PhysX of 

nVidia [21] is a physics engine that uses the CUDA 
architecture to optimize its calculation [22]. Bullet [23], an 
open source physics engine, is also investing in porting it to the 
GPU and has released demos with some aspects of the engine 
running on the GPU. Also in [24] a hybrid physics engine that 
has some of its calculations on the GPU was presented. Besides 
the physics engines, there are other works related to the 
implementation of physics simulation processes on the GPU 
like: particle system [25], deformable bodies system [26], 
fluids [27, 28] and collision detection [29]. 

Physics simulation works very well on the GPU because of 
the high performance of the stream processors, which allows 
high parallelism of the physics problems that can be solved in 
this structure. With that, it is possible to have faster physics 
simulation on games, and also more physics realistic games.  

Another field that could be implemented in the GPGPU and 
can be used by games is game AI or game logic. This field has 
not been explored and there are very simple works on the field. 
There is an implementation of Finite State Machine on the 
GPU [2], but it only implemented very primitive behavior and 
cannot be used for games.  

Another field that can be incorporated into a game that 
explores GPGPU is crowd simulation [30–36]. Crowd 
simulation can be used in games for simulating the behavior of 
herds [31, 35], people walking on streets [37], soldiers fighting 
in a battle [38], spectators watching a performance [39] and 
also to populate game worlds [30], like a GTA game [40]. 
These works are particularly important since they propose a 
simple AI model implementation into GPU architecture. This 
kind of simulation can also be implemented using the 
architecture proposed in this paper, as shown in the crowd 
simulation test case. 

There are also some works that deal with the distribution of 
tasks between the CPU and GPU, like [24, 41–45]. These 
works concentrated on the GPU processing most of the physics 
tasks and distributing other tasks to the CPU. Even though 
these works presented some aspects of the game tasks 
processed by the GPU, the present work differs in a way that 
all game tasks are processed by the GPU.  

Another research topic is related to the challenges for 
turning the game tasks parallel for multi-cores CPU, on which 
two works can be highlighted. The first presented the idea of a 
game loop, which is called Data Parallel Model [46]. In this 
model, the data is grouped in parallel sections of the 
application where they are processed. The Data Parallel Model 
proposed to use separate threads for sets of data (like game 
objects), instead of using a main loop with concurrent parts that 
process all data. The second approach presented the design of a 
parallel game engine for multi-cores Intel processors [5]. The 
main idea is to divide the data processing in tasks (like AI, 
physics, graphics and audio) and divide those tasks between the 
available cores. The presented work uses some similar 
concepts, like grouping the tasks according to the game object 
and dividing the tasks according to task itself.  

The authors of this paper do not know any previous work in 
the literature that uses the GPU to process the entire game 



IT in Industry, vol. 2, no. 1, 2014  Published online 8-Apr-2014 

 

Copyright © Authors 8  

 

logic, like the one presented in this work. An earlier version of 
this architecture can be seen in [47]. 

IV. THE ARCHITECTURE 

Computer games are multimedia applications that require 
knowledge of many different fields, such as computer graphics, 
artificial intelligence, physics, networking and others [44]. 
Computer games are interactive applications that exhibit three 
general classes of tasks: data acquisition, data processing, and 
data presentation. Data acquisition in games is related to 
gathering data from input devices such as keyboards, mice and 
joysticks. Data processing tasks include applying game rules, 
responding to user commands, simulating physics and artificial 
intelligence behaviors. Data presentation tasks relate to 
providing feedback to the player about the current game state, 
usually through images and audio. In this architecture 
practically all game logic is processed in the GPU, i.e. all the 
data processing tasks, only using the CPU for tasks that need to 
make use of CPU, like data acquisition.  

The game loops are the underlying structure that games and 
real time simulations are built upon. These loops are regarded 
as real-time because games and simulations (and similar kinds 
of multimedia applications) have time constraints to run the 
tasks that rely on them. This means that if those tasks do not 
run fast enough, the experience that the application must 
provide will be compromised. 

Most GPGPU works use a sequential game loop called 
single-thread game loop with a GPGPU stage [24], which 
processes some of the data processing tasks of the game loop 
inside the GPU. Figure 1 illustrates this game loop. There are 
some variations of the same loop by putting the tasks in multi-
threads [44]. 

 

Fig. 1. Single-thread game loop with a GPGPU stage. 

The game loop of this architecture differs from those works 
as it does not have an update stage in the CPU. This loop works 
as follows. First the CPU gathers the input and sends it to the 
GPU. The GPU processes this data, making the necessary 
adjustments, like the transformation of players’ positions and 
the creation of the players’ shots. The GPU starts updating the 
bodies by applying the physics behavior on them and their 
logic behavior, which corresponds to the artificial intelligence 
step. These updates are put in a VBO (Vertex Buffer Object) 
and sent to the shaders for rendering. The GPU also sends 
variables to the CPU in order to execute sound effects and to 
tell if it should terminate the application. This game loop is 
illustrated in Figure 2. 

To resume, the CPU is responsible for:  

 creating a window;  

 gathering the users input and sending it to the GPU;  

 making the GPU calls;  

 executing the music and sound effects; and 

 terminating the simulation/application/game, i.e., 
destroying the window and releasing the data.  

And the GPU is responsible for: 

 applying the physics on the bodies;  

 processing the artificial intelligence;  

 determining the game status, like the player scores; and 

 determining the end of simulation/application/game.  

 

Fig. 2. Game loop of architecture. 

 
 



IT in Industry, vol. 2, no. 1, 2014  Published online 8-Apr-2014 

 

Copyright © Authors 9  

 

 

Fig. 3. The different processes of the architecture threads. 

The data that is exchanged between the CPU and GPU is 
encapsulated in a special structure, in order to keep the 
communication between the CPU and GPU to a minimum, 
since this process can be a bottleneck of any simulation that 
requires communication between the CPU and GPU [48]. In 
order to implement this architecture some data structures are 
needed. The description of the data required for each entity 
follows:  

 one vector (x, y, z) with the entity position;  

 one vector (x, y, z) with the entity force;  

 one vector (x, y, z) with the entity direction/orientation;  

 one float as the entity type;  

 one float with the entity energy; and 

 one float for the entity mass.  

The data is grouped into three vectors of size four in order 
to optimize the data exchange between GPU executions. To 
assure the desired high performance, all information, whenever 
possible, is organized and mapped as textures, using a ping-
pong strategy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Random numbers are used in games to avoid deterministic 
behavior. In the proposed architecture, random numbers are 
used to model random behavior of entities, including the 
creation of new entities, the initial status of these entities and 
the actions of the entities. Since GPUs do not have native 
pseudo random number generation, we developed a pseudo-
random number generator based on a nVidia demo [49]. 

GPGPU programs are divided into threads. In order to 
process the main game logic that needs to be executed 
sequentially, the proposed architecture has a special GPU 
thread, which is responsible for it, and is the same that treats 
the user inputs. This processing includes tasks that updates the 
simulation according to the users input, i.e., threats the input; 
creates new entities, if necessary (which are created in other 
GPU threads); determines the scores (in case that the 
simulation is a game); determines the game over or the end of 
the simulation. The others threads are responsible for updating 
the entities, like collision detection and response, and the 
entities behavior. Even though some threads may wait for 
others threads to end, this approach shows an average speedup 
of 35 %. 

There are three types of entities simulated by this work: 
physical entity, behavior entity and physical-behavior entity. 
The physical entity will only simulate the physical aspects of 
an entity related to collisions. The behavior entity will only 
 

 
 

 



IT in Industry, vol. 2, no. 1, 2014  Published online 8-Apr-2014 

 

Copyright © Authors 10  

 

simulate the behavior of the entity and will not simulate 
collisions. And the physical-behavior entity will simulate both 
the physical and behavioral aspects.  

The positions and type of an entity is gathered into a VBO 
(Vertex Buffer Object) and sent to a vertex shader for 
rendering without the use of the CPU. In order to deal with the 
creation of the entities, the architecture keeps a list with the 
values to indicate available positions for entities creation.  

Using this structure, the GPU processes some empty 
threads (threads that practically do not process anything), and 
also different codes in different threads, which can affect the 
general performance, because of the threads synchronization 
mechanism inside the GPU block. In order to avoid this, the 
architecture proposed to group similar threads together into a 
GPU block, avoiding the loss in performance caused by thread 
synchronization. Figure 3 illustrates the processes of the 
different threads. 

The proposed architecture was built in a way that it can be 
used, with proper modifications, for both 3D games and 
GPGPU particle simulations. It was implemented using the 
following technology: CUDA [9] for GPGPU processing; 
OpenGL for rendering; GLSL (OpenGL Shading Language) 
for shaders; and GLUT (OpenGL Utility Toolkit) for window 
creation and input gathering. But the concepts presented here 
could also be adapted to others technologies. In the next 
sections, the most important steps that are processed on the 
GPU, the physics step and the AI step, are present. 

V. PHYSICS STEP 

This step is responsible for the physics behavior, i.e., how 
the bodies process and resolve body collisions and responses. 
The physics of this architecture is based on the physics of 
particle systems [25, 50–52] and a hybrid physics engine [24].  

Collision detection is a complex operation. For n bodies in 
a system, there must be a collision detection to check between 
the O(n

2
) pairs of bodies. Normally, to reduce this computation 

cost, this task is performed in two steps: first, the broad phase, 
and second, the narrow phase. In the broad phase, the collision 
library detects which bodies have a chance of colliding among 
themselves. In the narrow phase, a more refined collision 
algorithm are performed between the pairs of bodies that 
passed by the broad phase. 

 

Fig. 4. The neighborhood matrix. 

The physics step is responsible for: 

 executing the broad phase of the collision detection; 

 executing the narrow phase of the collision detection, 
by applying the collision test in each of the previously 
approved body pair; and 

 forwarding the simulation step for each body by 
computing the new position and velocity according to 
the forces and the time step, i.e., solving the motion 
equations. 

A. The Broad Phase 

This phase is responsible for avoiding the n
2
 comparison 

between all the entities, and also avoiding doing a narrow 
phase of the collision detection between the n

2
 entities which is 

normally done by spatial hashing.  

There are many ways to do a spatial hashing in the broad 
phase of collision detection. This work uses a uniform grid, 
which has a constant building cost, which makes the simulation 
more constant, and is highly suitable for the parallel structure 
of the GPU. This structure is also used in the AI step in order to 
determine the vision of the bodies. 

This work has based its implementation on the 
neighborhood gathering method using neighborhood matrix 
which were presented in [31–34]. 

1) Neighborhood Matrix 
The entity information is stored in matrices, where each 

index contains values for an individual entity. Since is possible 
to be required a variable number of data about the entities, it 
may be necessary to use more than one matrix. However it is a 
good practice to avoid wasting GPU memory by sharing 
vectors to store more than one single piece of information in 
each index. 

The matrix containing the position vector for the entities is 
then used as a sorting structure. In Figure 4, one can see an 
example of such matrix where information about the position 
of 36 individual entities. To reduce the cost of proximity 
queries, each entity will have access to the ones surrounding its 
cells based on a given radius. In the example, the radius is 2, so 
the entity represented at cell (2, 2) would have access to its 24 
surrounding entities only. In cellular automata, this form of 
information gathering is called extended Moore neighborhood 
[53]. 

This structure enables the exact prediction of the 
performance, since the number of proximity queries will be 
constant over the simulation. This happens because instead of 
making distance queries, taking as parameters all entities inside 
its own coarse Voronoi cell and the ones in the adjacent 
regions, as in traditional implementations, each entity would 
query only a fixed number of surrounding individual matrix 
cells. However, this matrix has to be sorted continually in such 
a way that neighbors in geometric space are stored in cells 
close to each other. This guarantees that this extension of 
cellular automata may gather information about close 
neighbors. For maintaining the grid aligned we use a bitonic 
sort [54], which makes a full sort in each dimension. The 

 



IT in Industry, vol. 2, no. 1, 2014  Published online 8-Apr-2014 

 

Copyright © Authors 11  

 

bitonic sort is a simple parallel sorting algorithm that is very 
efficient when sorting small number of elements [55], which is 
our case since our sorting algorithm is applied to each 
dimension separately. Our implementation is an optimized and 
adapted version based on the previous work of nVidia [56]. 
More on this data structure can be seen in [32]. 

B. The Narrow Phase of Collision Detection 

The narrow phase of the collision detection is responsible 
for doing the collision detection among the rigid bodies. In this 
work, instead of doing the collision check between all the 
polygons of the entities, it is implemented a basic primitive 
area element, that complex models are put inside. The bounds 
are used to surround every model, simplifying the narrow 
phase of the collision detection. Two types of bounds were 
implemented: a circle bound and a bounding rectangle. The 
circle bound is used whenever it is possible. This is done in 
order to save memory, since the circle bound only needs the 
position vector and a radius, while the bounding rectangle 
needs four variables. 

C. The Integrator 

This method is responsible for integrating the equations of 
motion of a rigid body [57]. In the proposed architecture, it 
consists of a simple formulation; since it does not take into 
account the angular velocities and torque. This method updates 
crowd entity velocity based on the forces that are applied to it, 
which are sent to the integrator, and then it updates the position 
based on its velocities, using an integration method based on 
Euler integration (this type of integration is one of the simplest 
forms of integration). Mathematically, it evaluates the 
derivative of a function at a certain time, and linearly 
extrapolate based on that derivative to the next time step. 

VI. AI STEP 

Game Artificial Intelligence (AI) is used to produce the 
illusion of intelligence in the behavior of non-player characters 
(NPC), as, for instance, in the case of the test case GpuWars, of 
the enemies. The algorithms used for Game AI are typically 
built upon known methods from the AI field, but game AI 
focuses more on the gameplay instead of precision. Besides, 
game AI has more computational constraints than pure AI 
applications, since the game needs also to process the game 
physics and to render the results.  

There are several ways to implement the game AI, such as 
Finite State Machines (FSM), fuzzy logic, neural networks, and 
many others [58]. This work uses Finite State Machine. FSMs 
are powerful tools used in many parts of computer games [59–
61], like the NPC behavior, the characters animation states and 
the game menu states.  

A FSM models structured behavior and is composed by 
states, the transitions between those states, and the actions. The 
architecture can be used to implements agent-based behaviors 
like finite state machines and crowd behavior.  

The behaviors are affected by the size of vision (which uses 
the grid made by the broad phase of the collision detection), 
velocity, energy and type, which are variables available for 
each type of entity. 

VII. TEST CASE I: CROWD SIMULATION 

In order to validate and show the scalability of the 
architecture proposed in this work, we implemented the well 
known distributed simulation algorithm flocking boids (bird-
like object) [62]. This algorithm was selected because of its 
good visual results, proximity to real world behavior 
observation of animals and understandability. The 
implementation of the flocking boids model using the 
architecture proposed enabled a real time simulation of up to 
131 thousands animals of several species, with a corresponding 
visual feedback.  

The test case simulated a crowd of animals interacting with 
each other and avoiding random obstacles around the space. 
This simulation can be used to represent from small bird flocks 
to huge and complex terrestrial animal groups or even 
thousands of thousands of different cells in a living system. 
Boids from the same type (representing the species) try to form 
groups and avoid staying close to other type of species. 

To achieve a realistic simulation we try to mimic what is 
observed in nature. Many animal behaviors resemble that of 
state machines and cellular automata, where a combination of 
internal and external factors defines which actions are taken 
and how they are made. A state machine is used to decide 
which actions are taken. With this approach, internal state is 
represented by the boid type and external ones correspond to 
the visible neighbors, depending from where the boid is 
looking at (direction), and their relative distances. 

Based on these ideas, our simulation algorithm uses internal 
and external states to compute these influences for each boid: 
flocking (grouping, repulsion and direction following); leader 
following; and other boid types repulsion (used also for 
obstacle avoidance). An illustration can be seen in Figure 5. 

 

Fig. 5. The Boid state machine. 

 



IT in Industry, vol. 2, no. 1, 2014  Published online 8-Apr-2014 

 

Copyright © Authors 12  

 

A. Results 

Every boid was implemented as a physical-behavior entity, 
and it was render as a simple sphere. All the tests of this test 
case were made with an Intel quad-core 2.4 GHz with a nVidia 
Geforce 8800 GTS (which has 96 stream processors) running 
on Windows Vista. Each instance of the test ran for 300 
seconds. The average time to compute a frame (and subsequent 
frames per second) was recorded for each experiment. To 
assure the results are consistent, each test was repeated 10 
times and the standard deviation of the average times 
confirmed to be within 3%. A screenshot of the simulation can 
be seen in Figure 6. 

Table 1 shows the results of the simulation in milliseconds 
and in frame per seconds, and Figure 7 show the evolution of 
the simulation with the different numbers of entities in the 
simulation. 

This result shows that the architecture presents a good 
evolution, and can simulate and render up to 131 thousands 
interactive boids in real-time. A similar work of Reynolds [63] 
implements a similar algorithm, without the physics collision 
and response, in a Sony Playstation 3 architecture and can 
simulate and render up to 15 thousands interactive boids. 

VIII. TEST CASE II: GPUWARS GAME 

The GpuWars is a massive 2D game prototype shooter with 
a top-down 2D perspective. The game is similar to 2D shooters 
like Geometric Wars [64] and E4 [65]. The main enhancements 
of GpuWars is that it uses GPU to process its calculations, 
allowing to process and render thousands of enemies, while 
similar games only process hundreds.  

The game play is very simple. The player plays as a GPU 
card (which is called “GPUShip”) inside the “computer 
universe”, and he needs to process (by shooting them) 
polygons, shaders and data (the enemies) from a game. Every 
time the “GPUShip” makes physical contact with an enemy it 
loses time and in consequence it loses FPS. The objective is to 
process the maximum number of data in the smaller amount of 
time, and keep the game interactive with a minimum 12 frames 
per second.  

 

 

Fig. 6. A screenshot of the simulation. 

TABLE I.  RESULTS OF THE CROWD SIMULATION TEST CASE 

Number of bodies Time GPU GPU FPS 

 512 2.26 442 

 1024 2.69 371 

 2048 3.44 291 

 4096 4.57 219 

 8192 5.26 190 

 16384 8.20 122 

 32768 13.89 72 

 131032 55.56 18 

 

The GpuWars uses the keyboard as the input device, where 
one set of controls are used to control the movement of the 
“GPUShip”, and another set to control the direction of the 
shots. The shots are implemented as physical entities and the 
enemies are simulated as physical-behavior entities. 

A. The GpuWars Game AI 

This game implements 3 different behaviors using FSM: 
the kamikaze, the group and the tricky behaviors, which are 
present in the next subsections.  

The behaviors are affected by the size of vision (which uses 
the grid made by the broad phase of the collision detection), 
velocity and energy (which are variables available for each 
type of enemy). By modifying these values, this work 
implements seven different types of enemies. 

1) Kamikaze Behavior 
The kamikaze approach is a behavior that simulates suicidal 

attacks. It is created by using a state machine that has four 
states: wandering, attacking, checking energy, and dead. It is 
illustrated in Figure 8. 

 

Fig. 7. Elapsed time of the simulation in milliseconds. 

 
 



IT in Industry, vol. 2, no. 1, 2014  Published online 8-Apr-2014 

 

Copyright © Authors 13  

 

 

Fig. 8. The Kamikaze state machine. 

The kamikaze is a very simple behavior. It wanders until it 
sees the “GPUShip”, then it goes attacking it by throwing itself 
against it. This approach is well suited for GPU architecture, 
since little information about the scene is necessary. 

2) Group Behavior 
The group behavior creates a conduct pattern that makes 

groups, avoid bullets and attacks. It was modeled with a state 
machine that has six states: wandering, grouping, attacking, 
checking energy, avoiding bullets and dead, as shown in Figure 
9. 

This behavior is also very simple. The entity wanders trying 
to find similar entities, i.e., entities of the same type, and the 
“GPUShip”. If it sees a similar entity, it goes closer to it and 
makes a group. In cases where it can see the player, it attacks 
the player by throwing itself against it. If the entity sees a bullet 
coming in its direction, it tries to avoid it. 

 

Fig. 9. The group state machine. 

 

Fig. 10. The tricky state machine. 

3) Tricky Behavior 
The tricky behavior is the most complex behavior of the 

game. Similar to group behavior, this behavior also tries to 
group similar entities. For the tricky behavior, an entity may 
recover its energy. It has a state machine with seven states: 
wandering, grouping, attacking, avoiding bullets, checking 
energy, escaping, and dead, as shown in Figure 10. 

This type of enemy wanders trying to find the “GPUShip” 
or similar entities. If it sees a similar individual, it goes closer 
to it and makes a group. If it is seeing the player, it throws 
itself against it. If the entity sees a bullet coming in its direction 
it tries to avoid it. If it has little energy it tries to escape from 
the player neighborhood to recover the lost energy. 

 

Fig. 11. A screenshot of the game. 

 

 

 

 



IT in Industry, vol. 2, no. 1, 2014  Published online 8-Apr-2014 

 

Copyright © Authors 14  

 

 

Fig. 12. Performance of the game. 

B. Results 

For the sake of repeatability, we ran the tests over the 
minimum hardware that can run CUDA. We used a notebook 
with an AMD Turion Dual-core, 3GB of RAM, with a nVidia 
GeForce mobile 8200M GPU card, which has only 8 stream 
processors, running on Windows Vista. 

The number of enemies determines the performance of the 
game. This game has a maximum of 8192 enemies. A 
screenshot of the game can be seen of Figure 11. To better 
view the performance, Figure 12 shows a graph with the 
performance in FPS of the game for 5 minutes of the game. 
From this figure it can be seen that the performance of the 
game ranges from 45 to 58 frames per second (FPS). This 
performance is considered optimal in a game [43].  

We have also tested the GpuWars game with the CPU 
determining the game status (players and enemies energies, and 
players scores) and the performance of the game has decreased 
to 30-40 FPS. Showing a bottleneck on the CPU’s processing 
of the game status. This test also shows that the use of the 
architecture with all the game processing inside the GPU, can 
considerably speedup the game. 

The game was also tested over a more powerful hardware, a 
quad-core with a nVidia GeForce 8800GS GPU card similar to 
the one used in the crowd test case, with similar results but 
with a speedup of three times (the FPS ranges from 130 to 
170). 

IX. CONCLUSIONS AND FUTURE WORK 

The development and evolution of multi-cores processors, 
GPUs and video games indicates that multi-thread architectures 
are a trend. Besides, the GPUs have evolved into more generic 
processors allowing them to be used to process different tasks 
of the game logic. Most works deals with some aspects of the 
game logic, with more focus on the game physics, and allowing 
the CPU to process others tasks, like the game AI. This work 
differs from the related GPGPU works, presenting an 
architecture that has all the game logic inside the GPU. The 
concepts of the proposed architecture could also be applied to  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
others multi-cores processors like the Playstation 3, Xbox 360, 
and clusters. One drawback of the architecture is that, in order 
take full advantage of the GPU power, all game task must be 
implemented in GPGPUs kernels. 

This work has implemented two tests cases using the 
proposed architecture: a crowd simulation, and a 2D game 
shooter. The crowd test case was a boid simulation which can 
achieve up to 131 thousands entities in interactive frame rate. 
This type of simulation can be applied to games, creating richer 
environments for the players. 

The second test case is a design and implementation of the 
GpuWars game, which is a 2D shooter that has parallel tasks, 
AI, physics and game score, which are processed on the GPU. 
Also the concept of making the game logic parallel can be 
adapted for other multi-thread architectures. This can make a 
new trend on game development. 

This architecture could be used for optimizing GTA [40] 
like games, by putting the simulation of pedestrian behavior 
and vehicles behavior on the GPU. It could also be used for the 
simulation of real time strategy game (RTS) characters 
behavior. 

Future works will focus on creating more complex behavior 
for enemies, by implementing other game AI techniques, like 
hierarchical state machines, fuzzy logic and neural networks. 
Our plans are to proceed by evolving the proposed architecture, 
transforming it into a GPGPU game engine so that it can be 
used in other type of games. 

REFERENCES 

[1] A. Anderson, W. G. III, and P. Schröder, “Quantum monte carlo on 
graphical processing units,” Computer Physics Communications, vol. 
177, no. 3, pp. 298–306, 2007. 

[2] I. Rudomín, E. Millán, and B. Hernández, “Fragment shaders for agent 
animation using finite state machines,” Simulation Modelling Practice 
and Theory, vol. 13, no. 8, pp. 741–751, 2005. 

[3] C. Müller, M. Strengert, and T. Ertl, “Adaptive load balancing for 
raycasting of non-uniformly bricked volumes,” Parallel Computing, vol. 
33, no. 6, pp. 406–419, 2007. 

 



IT in Industry, vol. 2, no. 1, 2014  Published online 8-Apr-2014 

 

Copyright © Authors 15  

 

[4] J. Krüeger, “A GPU framework for interactive simulation and rendering 
of fluid effects,” 2008. [Online]. Available:  
http://www.sci.utah.edu/publications/krueger08/GPU_framework.pdf 

[5] Intel, “Intel multi-core technology,” 2009. [Online]. Avalible: 
http://www.intel.com/multi-core/ 

[6] nVidia, “Technical brief: nVidia GeForce 8800 GPU architecture 
overview,” 2006. [Online]. Available: 
http://www.nvidia.com/page/8800_tech_briefs.html 

[7] ——, “nVidia CUDA compute unified device architecture,” 
Programming Guide, 2008. 

[8] ——, “nVidia GeForce 9800 GX2 specification,” 2009. [Online]. 
Avalible: 
http://www.nvidia.com/object/product_geforce_9800_gx2_us.html 

[9] ——, “nVidia CUDA compute unified device architecture 
documentation version 2.2,” 2009. [Online]. Avalible: 
http://developer.nvidia.com/object/cuda.html 

[10] AMD, “AMD stream computing,” 2008. [Online]. Avalible: 
http://ati.amd.com/technology/streamcomputing/firestream-sdk-
whitepaper.pdf 

[11] J. D. Owens, D. Leubke, N. Govindaraju, M. Harris, J. Krger, A. E. 
Lefohn, and T. J. Purcell, “A survey of general-purpose computation on 
graphics hardware,” Computer Graphics Forum, vol. 26, no. 1, pp. 80–
113, 2007.  

[12] K. Group, “OpenCL - the open standard for parallel programming of 
heterogeneous systems,” 2009. [Online]. Avalible: 
http://www.khronos.org/opencl/ 

[13] B. Kadlec, H. Tufo, and G. Dorn, “Knowledge-assisted visualization and 
segmentation of geologic features using implicit surfaces,” IEEE 
Computer Graphics and Applications, vol. PP, no. 99, Preprint, 2009.  

[14] P. Muyan-Ozcelik, J. D. Owens, J. Xia, and S. S. Samant, “Fast 
deformable registration on the GPU: a CUDA  implementation of 
demons,” in Proceedings of the 1st technical session on UnConventional 
High Performance Computing (UCHPC) in conjunction with the 6th 
International Conference on Computational Science and Its Applications 
(ICCSA), M. Gavrilova, O. Gervasi, A. Lagan, Y. Mun, and A. Iglesias, 
Eds., ICCSA 2008. Los Alamitos, California: IEEE Computer Society, 
2008, pp. 223–233.  

[15] TunaCode, “CUVIlib: CUDA vision and imaging library,” 2010. 
[Online].  Avalible: http://www.cuvilib.com/ 

[16] nVidia, “CUDA zone,” 2010. [Online]. Avalible: 
http://www.nvidia.com/object/ cuda_home_new.html 

[17] M. Harris, “gpgpu.org,” 2010. [Online]. Avalible: 
http://www.gpgpu.org, 2010.  

[18] S. Green, “GPGPU physics,” Siggraph07 GPGPU Tutorial, The 34th 
International Conference and Exhibition on Computer Graphics and 
Interactive Techniques, San Diego, California, USA, August 2007.  

[19] Havok, “Havok physics,” 2009. [Online]. Avalible: 
http://www.havok.com/content/view/17/30/ 

[20] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. 
Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. 
Juan, and P. Hanrahan, “Larrabee: A many-core x86 architecture for 
visual computing,” ACM Transactions on Graphics, vol. 27, no. 3, 2008.  

[21] nVidia, “nVidia physx,” 2009. [Online]. Avalible: 
http://www.nvidia.com/object/nvidia_ physx.html  

[22] M. Harris, “CUDA fluid simulation in nVidia physx,” SIGGRAPH Asia 
2009: Beyond Programmable Shading course, The 2nd ACM 
SIGGRAPH Conference and Exhibition in Asia, Yokohama, Japan, 
2009.  

[23] E. Coumans, “Bullet physics library,” 2009. [Online]. Available: 
http://www.bulletphysics.com 

[24] M. Joselli, E. Clua, A. Montenegro, A. Conci, and P. Pagliosa, “A new 
physics engine with automatic process distribution between CPU-GPU,” 
in Proceedings of the 2008 ACM SIGGRAPH Symposium on Video 
games, 2008, pp. 149–156. 

[25] P. Kipfer, M. Segal, and R. Westermann, “Uberflow: a GPU-based 
particle engine,” in Proceedings of the ACM SIGGRAPH Conference on 
Graphics Hardware, 2004, pp. 115–122.  

[26] J. Georgii, F. Echtler, and R. Westermann, “Interactive simulation of 
deformable bodies on GPU,” in Proceedings of Simulation and 
Visualization, 2005, pp. 247–258.  

[27] J. R. da Silva Junior, E. W. G. Clua, A. Montenegro, M. Lage, M. de 
Andrade Dreux, M. Joselli, P. A. Pagliosa, and C. L. Kuryla, “A 
heterogeneous system based on GPU and multi-core CPU for real-time 
fluid and rigid body simulation,” International Journal of Compu- 
tational Fluid Dynamics, vol. 26, no. 3, pp. 193–204, 2012.  

[28] J. R. da Silva Junior, M. Joselli, M. Zamith, M. Lage, E. Clua, and E. 
Soluri, “An architecture for real time fluid simulation using multiple 
GPUs,” in Proceedings of SBGames, SBC, 2012.  

[29] K. N. Govindaraju, S. Redon, M. C. Lin, and D. Manocha, “CULLIDE: 
interactive collision detection between complex models in large 
environments using graphics hardware,” in Proceedings of the ACM 
SIGGRAPH Conference on Graphics Hardware, 2003, pp. 25–32.  

[30] J. Shopf, J. Barczak, C. Oat, and N. Tatarchuk, “March of the Froblins: 
simulation and rendering massive crowds of intelligent and detailed 
creatures on GPU,” ACM SIGGRAPH 2008: Advances in Real-Time 
Rendering in 3D Graphics and Games Course, New York, NY, USA, 
2008, pp. 52–101.  

[31] E. Passos, M. Joselli, M. Zamith, J. Rocha, A. Montenegro, E. Clua, A. 
Conci, and B. Feijo  , “Supermassive crowd simulation on GPU based on 
emergent behavior,” in Proceedings of the VII Brazilian Symposium on 
Computer Games and Digital Entertainment, 2008, pp. 81–86.  

[32] E. B. Passos, M. Joselli, M. Zamith, E. W. G. Clua, A. Montenegro, A. 
Conci, and B. Feijo, “A bidimensional data structure and spatial 
optimization for supermassive crowd simulation on GPU,” Computers in 
Entertainment (CIE), vol. 7, no. 4, p. 60, 2009.  

[33] M. Joselli, E. B. Passos, M. Zamith, E. Clua, A. Montenegro, and B. 
Feijo, “A neighborhood grid data structure for massive 3d crowd 
simulation on GPU,” in Proceedings, Brazilian Symposium on Games 
and Digital Entertainment, pp. 121–131, 2009.  

[34] M. Joselli, E. B. Passos, J. R. S. Junior, M. Zamith, E. Clua, and E. 
Soluri, “A flocking boids simulation and optimization structure for 
mobile multicore architectures,” in Proceedings of SBGames, 2012, pp. 
83–92.  

[35] A. R. Silva, W. S. Lages, and L. Chaimowicz, “Improving boids 
algorithm in GPU using estimated self occlusion,” in Proceedings of 
SBGames ’08 – VII Brazilian Symposium on Computer Games and 
Digital Entertainment, 2008, pp. 41–46. 

[36] R. D. Chiara, U. Erra, V. Scarano, and M. Tatafiore, “Massive 
simulation using GPU of a distributed behavioral model of a flock with 
obstacle avoidance,” in Proceedings of Vision, Modeling, and 
Visualization (VMV), 2004, pp. 233–240. 

[37] J. van den Berg, S. Patil, J. Sewall, D. Manocha, and M. Lin, 
“Interactive navigation of multiple agents in crowded environments,” in 
Proceedings of the 2008 Symposium on Interactive 3D graphics and 
games (I3D ’08), ACM, New York, USA, 2008, pp. 139–147. 

[38] X. Jin, C. C. L. Wang, S. Huang, and J. Xu, “Interactive control of real-
time crowd navigation in virtual environment,” in Proceedings of the 
2007 ACM Symposium on Virtual reality software and technology 
(VRST ’07), ACM, New York, NY, USA, 2007, pp. 109–112.  

[39] nVidia, “Skinned instancing,” 2008. [Online]. Avalible: 
http://developer.download.nvidia.com/SDK/10/direct3d/Source/Skinned
Instancing/doc/SkinnedInstancingWhitePaper.pdf  

[40] R. G. North, “Grand theft auto IV, rockstar games,” 2008. [Online]. 
Avalible: http://www.rockstargames.com/IV/ 

[41] M. Joselli, M.  amith, L. Valente, E. W. G. Clua, A. Montenegro, A. 
Conci, B. Feijo  , M. Dornellas, R. Leal, and C. Pozzer, “Automatic 
dynamic task distribution between CPU and GPU for real-time 
systems,” in IEEE Proceedings of the 11th International Conference on 
Computational Science and Engineering, 2008, pp. 48–55. 

[42] M. Zamith, M. Joselli, L. Valente, E. Clua, A. Montenegro, R. C. P. 
Leal-Toledo, and B. Feijo, “A game loop architecture with automatic 
distribution of tasks and load balancing between processors,” in 
Proceedings of SBGames 2009, pp. 5–8.  

[43] M. Joselli, M.  amith, L. Valente, E. W. G. Clua, A. Montenegro, A. 
Conci, and P. Feijo  , Pagliosa, “An adaptative game loop architecture 



IT in Industry, vol. 2, no. 1, 2014  Published online 8-Apr-2014 

 

Copyright © Authors 16  

 

with automatic distribution of tasks between CPU and GPU,” in 
Proceedings of the VII Brazilian Symposium on Computer Games and 
Digital Entertainment, 2009, pp. 115–120. 

[44] M. Joselli, M.  amith, L. Valente, E. W. G. Clua, A. Montenegro, R. 
Leal-Toledo, B. Feijo  , and P. Pagliosa, “An architeture with automatic 
load balancing for real-time simulation and visualization systems,” 
JCIS–Journal of Computational Interdisciplinary Sciences, Vol. 1, No. 3, 
pp. 207–224, 2010.  

[45] M. Joselli, M.  amith, E. W. G. Clua, A. Montenegro, R. C. P. Leal-
Toledo, L. Valente, and B. Feijo  , “An architecture with automatic load 
balancing and distribution for digital games,” in Proceedings of 2010 
Brazilian Symposium on Games and Digital Entertainment 
(SBGAMES), IEEE, 2010, pp. 59–70.  

[46] V. Mönkkönen, “Multithreaded game engine architectures,” 2006. 
[Online]. Available: 
http://www.gamasutra.com/features/20060906/monkkonen_01.shtml 

[47] M. Joselli and E. Clua, “GpuWars: design and implementation of a 
GPGPU game,” in Proceedings of 2009 VIII Brazilian Symposium on 
Games and Digital Entertainment (SBGAMES), IEEE, 2009, pp. 132–
140.  

[48] M. Joselli, J. Ricardo da Silva, M. Zamith, E. Clua, M. Pelegrino, and E. 
Mendonca, “Techniques for designing GPGPU games,” in Proceedings 
of Games Innovation Conference (IGIC), 2012, pp. 1–5.  

[49] V. Podlozhnyuk, “Parallel mersenne twister,” 2007. [Online]. Avalible: 
http://developer.download.nvidia.com/compute/cuda/sdk/website/project
s/MersenneTwister/doc/MersenneTwister.pdf 

[50] nVidia, “CUDA particles,” 2008. [Online]. Avalible: 
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projec
ts/ particles/doc/particles.pdf 

[51] Microsoft, “Advanced particles,” SIGGRAPH 2007: Real-Time 
Rendering in 3D Graphics and Games course, ACM, 2007.  

[52] M. Joselli, J. R. S. Junior, M.  amith, E. Clua, and E. Soluri, “A novel 
data structure for particle system simulation based on GPU with the use 
of neighborhood grids,” Proceedings of the GPU Computing Developer 
Forum 2012 (CSBC 2012 workshop), SBC, 2012. 

[53] P. Sarkar, “A brief history of cellular automata,” ACM Computing 
Surveys, vol. 32, no. 1, pp. 80–107, 2000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[54] K. E. Batcher, “Sorting networks and their applications,” in Proceedings 
of the Spring Joint Computer Conference (AFIPS ’68), New York, NY, 
USA, April 30–May 2, 1968, ACM, pp. 307–314. 

[55] G. E. Blelloch, C. G. Plaxton, C. E. Leiserson, S. J. Smith, B. M. Maggs, 
and M.  agha, “An experimental analysis of parallel sorting 
algorithms,” Theory of Computing Systems, vol. 31, no. 2, pp. 135–167, 
1998. 

[56] nVidia, “Bitonic sort demo,” Tech Report, 2007. [Online]. Available: 
http://www.nvidia.com/content/cudazone/cuda_sdk/Data-
Parallel_Algorithms.html#bitonic 

[57] D. H. Eberly, Game Physics. San Francisco, CA: Morgan Kaufmann 
Publishers, 2004.  

[58] D. M. Bourg and G. Seemann, AI for Game Developers. Sebastopol, 
CA: O’Reilly Media, 2004. 

[59] E. Dybsand, “A finite state machine class,” in Game Programming 
Gems, M. Deloura, Eds. Hingham, MA: Charles River Media, 2000, pp. 
237–248. 

[60] J. R. Rankin and S. S. Vargas, “FPS extensions modelling ESGs,” in 
Proceedings of the 2009 Second International Conferences on Advances 
in Computer-Human Interactions (ACHI ’09), Washington, DC, USA, 
IEEE Computer Society, 2009, pp. 152–155. 

[61] F. Li and R. J. Woodham, “Video analysis of hockey play in selected 
game situations,” Image Vision Computing, vol. 27, no. 1-2, pp. 45–58, 
2009. 

[62] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral 
model,” in Proceedings of the 14th Annual Conference on Computer 
Graphics and Interactive Techniques, SIGGRAPH ’87, New York, NY, 
USA, ACM, 1987, pp. 25–34. 

[63] C. Reynolds, “Big fast crowds on ps3,” in Proceedings of the 2006 ACM 
SIGGRAPH Symposium on Videogames, New York, NY, USA, ACM, 
2006, pp. 113–121. [Online]. Available: 
http://doi.acm.org/10.1145/1183316.1183333 

[64] B. Creations, “Geometry wars retro evolve,” 2009. [Online]. Available: 
http://www.bizarrecreations.com/games/geometry_wars_retro_evolved/ 

[65] Q. E. Inc., “Every extend extra extreme,” 2009. [Online]. Available: 
http://www.qentertainment.com/eng/2007/09/every_extend_extra_extre
me.html 

 

 


