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Abstract - Compressed Sensing (CS) has been 

considered a very effective means of reducing energy 

consumption at the energy-constrained wireless body 

sensor networks for monitoring the multi-lead 

Electrocardiogram (MECG) signals. This paper 

develops the compressed sensing theory for sparse 

modeling and effective multi-channel ECG 

compression. A basis matrix with Gaussian kernels is 

proposed to obtain the sparse representation of each 

channel, which showed the closest similarity to the 

ECG signals. Thereafter, the greedy orthogonal 

matching pursuit (OMP) method is used to obtain the 

sparse representation of the signals. After obtaining 

the sparse representation of each ECG signal, the 

compressed sensing theory could be used to compress 

the signals as much as possible. Following the 

compression, the compressed signal is reconstructed 

utilizing the greedy orthogonal matching pursuit 

(OMP) optimization technique to demonstrate the 

accuracy and reliability of the algorithm. Moreover, as 

the wavelet basis matrix is another sparsifying basis to 

sparse representations of ECG signals, the compressed 

sensing is applied to the ECG signals using the wavelet 

basis matrix. The simulation results indicated that the 

proposed algorithm with Gaussian basis matrix 

reduces the reconstruction error and increases the 

compression ratio. 
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1. INTRODUCTION 
 

he ambulatory monitoring of bioelectric signals has 

received considerable attention from different 

scholars in recent years. Such monitoring procedures 

offer several advantages, such as constant patient 

observation, increased patient mobility, and decreased 

healthcare costs [1]. However, there are difficulties with 

these devices, such as wearable device size, energy 

consumption, and energy costs. The energy 

consumption of these devices has long been considered 

the most important challenge. Moreover, in ambulatory 

environments, there is a strong need for the proper 
management of a large volume of bioelectric signals, 

generated by the health monitoring devices/sensors [1]. 

Hence, the lossy compression methods have captured 
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 considerable attention. These devices are mainly used 

to reduce the transmitted information while ensuring 

maximum signal quality. In this regard, compressive 
sensing (CS) is one of the most popular methods of 

compression, which is built-in and well suited to the 

energy-efficient wearable and mobile devices/sensors; 

this method is used to reduce the data to be stored and 

the data required by the micro-controllers and the 

analog-digital converters [2]. Therefore, [3] suggested 

that it is possible to utilize compressive sensing to 

reduce energy consumption. It helped to decrease the 

hardware complexity of the wireless body sensor 

network-enabled ECG monitors as well [4]. Today, the 

graphical representation of the electrical activities of the 

heart or ECG (electrocardiography) signals plays a 
substantial role in determining, diagnosing, and even 

preventing various cardiac diseases. These signals have 

to be recorded in the long-run (continuously for one or 

two weeks or even longer) for the accurate diagnosis of 

various diseases. The storage, transmission, or 

processing of this large volume of information are 

extremely difficult and require very large storage space 

and considerable time, especially when multiple ECG 

electrodes sense a high-resolution signal. Hence, the 

bioelectric signals have to be compressed using the 

compression methods [1, 3-4]. 
 

In recent years, many methods have been used for the 

optimal compression of electrocardiogram signals at a 

high compression ratio. Before the introduction of the 

compressed sensing theory, the methods were mainly 
based on direct compression methods. Methods such as 

AZTEC (amplitude zone epoch coding), CORTES 

(coordinate reduction time encoding), and SAPA (scan 

along with polygonal approximation) [5-7] are among 

the direct compression methods, which function based 

on the direct extraction of significant signal samples and 

omission of the insignificant parts. In these methods, 

most parts of the signal are omitted. Besides, sometimes 

even the significant parts are considered eliminated and 

are omitted along with the other parts of the data. Other 

compression methods involve the use of transforms to 
represent the signal to another sparse space. Transforms 

such as the Fourier transform, discrete cosine transform, 

and discrete wavelet transform are among these methods 

[8-11]. However, the degree of compression of these 

transforms is not satisfactory and none of these 

transforms forms an acceptable basis matrix for the 

electrocardiogram signals due to their lack of similarity 

to them. The third electrocardiogram signal compression 

method involves the use of the parameter extraction 

T 
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methods, which are a combination of the direct 

compression method and the mentioned transforms such 

as the peak picking (PP) and vector quantization (VQ) 

methods [12-13].  
 

Compressed sensing is a new method for compressing 

different types of signals, and it has been highly popular 

and commonly used in recent years [3-5]. In this 

method, sampling and compression of sparse signals are 

simultaneously carried out. Signals with sparse 

representations or almost sparse representations are 

reconstructed with very fewer samples than the Nyquist 

sampling method. In the past several years, compressed 

sensing has been used for the compression of 
electrocardiogram signals using a single electrode or 

multiple electrodes (i.e. single or multi-lead ECG). In 

[14], Compressed sensing is used to compress the ECG 

signals. Compressed sensing method has also been used 

to compress 12 to 15 multi-lead electrocardiogram 

signals in recent years [15-18]. In all of these references, 

the wavelet basis matrix is used for the sparse 

representation of ECG signals. As stated earlier, the 

wavelet basis matrix is not highly similar to the 

electrocardiogram signals and it is not an ideal option 

for sparsifying electrocardiogram signals. In [19], it is 

demonstrated that the ECG signals have the closest 
similarity to the Gaussian signals, and then these signals 

are optimally modelled using the Gaussian functions. 

Given this similarity, a basis matrix using Gaussian 

kernels is formed for sparsifying the ECG signal. 

Finally, the optimization problem has to be solved to 

obtain the sparse representation of the ECG signal.  
 

Inspired by the promising results of the aforementioned 

methods, inthis paper, a new method is proposed for 

modelling the ECG signals and compressing these 

signals based on the compressed sensing theory. First, 

the sparse representation of the signals is required to 

implement the method. The sparse representation of 

each signal is obtained using a basis matrix with 

Gaussian kernels. Thereafter, the compressed sensing is 

used for signal compression with very fewer samples 
than the original signal. 
 

This paper is organized as follows; in section 2, the 

latest related works are reviewed in brief. In section 3, 

the compressed sensing theory is introduced briefly. In 
section 4, the compressed sensing theory is applied to 

the real and artificial ECG signals. Afterward, in section 

5, the results of the simulation and efficiency of the 

proposed theory are presented, and the summary and 

conclusions are provided in section 6. 

 

2. RELATED WORKS 
 

In wireless body sensor networks, sensors have limited 
computation capability and power resources without the 

assistance of any established infrastructures; many 

studies in the literature validate the potential of CS for 

energy-efficient ECG compression [20-24]. In this 

sense, the proposed algorithm in [25] assigns not only 

more weights to important parts of the ECG signals but 

also low priorities to other parts. Subsequently, by 

integrating an iterative weighted CS-based method, the 

proposed algorithm effectively solves the l_1 

minimization problem. This approach ignores the 

dependencies of the signal of interest in each window to 

the signal of the previous epoch (temporal correlations). 
For the recovery of the ECG signals, a modified 

iterative algorithm has been proposed in [26], which 

assumes that specific prior information about the signals 

is typically available. Hence, the performance of the 

recovery algorithm is directly influenced by the 

accuracy of the prior information of the signal and the 

particular application, which leads to somewhat accurate 

reconstruction and compression rates. The authors of 

[27] proposed a dictionary learning-based CS approach 

for sparse recovery of the ECG signals instead of the 

wavelet or DCT dictionaries. According to the 
morphology of the ECG signals, three different 

dictionaries are trained and applied for the recovery of 

the corresponding signal type. It has been confirmed 

that dictionary learning approaches require a huge 

amount of signal transmission energy and impose a high 

computational load on the resource constraints nodes 

[28-29]. Another work that considers temporal 

correlation among the ECG signals is [30], in which a 

principle component analysis (PCA) based algorithm 

has been developed to choose the necessary features of a 

signal (i.e., eigenvalue or principle components), which 
facilitate signal reconstruction without a loss of signal 

morphologies. In this work, a complicated multistage 

pre-processing step should be considered, which renders 

the algorithm inappropriate for real-time applications. 

Recently, a BSBL framework based CS has been 

proposed to efficiently exploit the spatial correlation and 

to accurately recover non-sparse physiological signals 

[31]. Since the BSBL framework is too slow in time for 

wearable wireless ECG monitoring systems, [32] have 

utilized the ADMM solution to improve the efficiency 

of their method. 

 
In this paper, compressed sensing is used for multi-lead 

ECG signal compressions. First, in order to obtain a 

sparse representation of the ECG signals, a dictionary of 

Gaussian kernels is created to meet the right condition 

of utilizing compressed sensing theory. It will show that 

using the Gaussian basis improves the compression 

ratio. Thereafter, based on compressed sensing, a 

sensing matrix is created to meet the theory conditions 

and helps to more compress the signals with very fewer 

samples. Finally, the signals are reconstructed using the 

orthogonal matching pursuit optimization method. 
Simulation results verify that the proposed algorithm 

achieves greater reconstruction accuracy with a smaller 

number of required transmissions, lower computational 
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complexity, and smaller reconstruction errors, as 

compared to the CS-based recovery methods. 

 

3. A BRIEF REVIEW OF THE COMPRESSIVE 

SENSING 
 

Compressive Sensing (CS) provides a simultaneous 

sensing and compression framework [2], enabling a 

potentially significant reduction in the sampling and 

computation costs at a sensor with limited capabilities. 

CS theory shows that a signal with a sparse transform 

representation can be reconstructed from a small set of 

incoherent random projections. Three mathematicians 

established the mathematical fundamentals and bases of 

the compressed sensing method in 2006 [2]. They 

suggested that perfect reconstruction may still be 
possible when the sample-rate criterion is not satisfied, 

provided that some conditions hold for the underlying 

signals. They proved that if a signal is exactly or 

approximately sparse in some appropriate domain, it can 

be reconstructed with even fewer samples than what the 

sampling theorem requires. Sparsity means that most of 

the elements of the signal are zero or nearly zero, 

leading to a reduced degree of freedom in signal 

representation. This idea is the basis of CS theory.  

 

The condition of sparsity of the signals in the 

compressed sensing theory is as important as the 
bandwidth condition in the Nyquist theory [33-34]. In 

fact, if this condition is not met, the compressed sensing 

theory cannot be used. From the mathematical point of 

view, signal xϵR^(N×1) is called k-sparse if only k 

signal samples are nonzero and the rest are zero. Most 

of the existing signals, including electrocardiogram 

signals, lack the sparsity features. Therefore, a basis 

matrix like ΦϵR^(N×M) has to be defined to obtain the 

sparse representation of the signal. In this case, a signal 

like x is called k-sparse because it can be written as 

x=Φc where  c ϵ〖 R〗^(M×1)and ‖c‖_0≤k. 

Electrocardiogram signals are sampled simultaneously 

with multiple electrodes to obtain multi-lead ECG 

signals (i.e. 12 to 15 electrodes). Therefore, the sparse 

representation of the multi-lead ECG signals is written 

as follows; 
 

 (1) 

Where X=(x1,x2,…,xs ) ϵ RN×S is a matrix containing S 

ECG signals and each column of matrix X shows one 

lead (channel). Besides, Φ=(ϕ1,ϕ2,…,ϕM ) ϵ RN×M is the 

basis matrix and C=(c1,c2,…,cs )  ϵ  RM×S is the sparse 

representation of each ECG signal, where cj is the sparse 

representation of lead xj. By acquisition of the sparse 

representation of the signal, the primary condition of the 

compressed sensing is met and the signals are 

compressed as follows; 
 

 (2) 

Where  is the measurement matrix and 

 is the compressed signal 

for each ECG lead. The other condition for using 

compressed sensing is preparing the proper 

measurement matrix. In [35], the authors proved that if 

the entries in the measurement matrix are independent 
and uniformly distributed samples of a Gaussian 

distribution (i.e., ), the measurement matrix 

satisfies the most important condition in the compressed 

sensing, i.e. the RIP (Restricted Isometry Property) 

condition. According to this condition, if , a 

matrix like  meets the RIP condition with a 

degree of  as follows  

 

 (

3) 

The mathematical results indicate that compressed 
sensing can be used if the measurement matrix satisfies 

these conditions. As a result, an -dimensional signal is 

transformed into an -dimensional compressed signal 

and . The proper value of  has to be 

selected such that the equation 4 is satisfied.  

 

 (4) 

 

where  . There are 

several optimization methods for signal reconstruction. 

Each of these methods can be selected to solve a 

problem depending on their applications. As stated 

before, for solving problems like there are some Greedy 
methods such as Matching Pursuit (MP), Orthogonal 

Matching Pursuit (OMP) [36], and Compressive 

Sampling Matching Pursuit (CoSaMP) [37]. 

 

4. THE PROPOSED CS BASED ALGORITHM 
 

In this section, an efficient algorithm is proposed for 

the compression of multi-lead ECG signals. As stated, 

ECG signals typically lack the sparsity features and a 
proper basis matrix is needed for the sparse 

representation of these signals. First, a basis matrix has 

to be built-in with the Gaussian kernels to obtain the 

sparse representation of the signal. Thereafter, the -

dimensional original signal is mapped to m dimensions 

 using a proper measurement matrix that 

meets the RIP condition. It is not easy to demonstrate 

that the measurement matrix meets the important  RIP  

condition as it needs to prove complicated and difficult 

relations. Hence in the literature, it is usually tried to 

replace the RIP condition with its other soft equivalents 

to prove the functionality of the measurement matrix. 

To this end, the coherency concept is used. In other 

words, the similarity between the columns of the 

measurement matrix is calculated via equation (5). 

 



IT in Industry, vol. 8, no.2, 2020                                                                                            Published online 07-April-2020 

12 

Copyright © Authors                                                                                                                         ISSN (Print): 2204-0595 

                                    ISSN (Online): 2203-1731 

 

(5) 

 

where  and  denote the columns of the measurement 

matrix. If the correlation is adequately low, the 

reconstruction of the compressed signal is guaranteed 

with minimum reconstruction error [35]. Besides, the 

correlation is always in the range of . The 

sensing matrix  has to meet the conditions 

as well. 

 

The first step to compress the selected signals is 

acquiring the sparse representation of the signals. To 
this end, a basis matrix with Gaussian kernels has to be 

created. Therefore, an adequate number of Gaussian 

functions with various means and variances are 

required. A Gaussian kernel is expressed as follows.  

 

 

(6) 

 

Where  and  are the shift and scaling parameters, 

respectively. In order to create a basis matrix that suits 
the sparse representation of the ECG signals, the proper 

shift and scale ranges have to be selected. One of the 

characteristics of the ECG signals is that the  peak in 

these signals is fully prominent and identifiable. This 

feature is used to find the proper range of the shift 

values. For instance, the number of samples in these 

ranges is calculated by finding the peak  in the signal 

and knowing that the respective range lengths of the 

 and  peaks at the 360  sampling 

frequency in a normal ECG signal are at most 200 and 

450 . The number of samples in ranges  and 

 is 72 and 162, respectively. Therefore, the shift 

associated with the Gaussian kernels has to fall in the 

range of  to fully cover one 

period of the ECG signal. In this range,  is the index 

for peak . According to [19], the suitable range for the 

scale of the ECG signals at the sampling frequency 

360  is . The size of the columns of 

the basis matrix  equals to , where  and  

show the number of different shift values and scales of 

the Gaussian kernels, respectively. Finally, the basis 

matrix is obtained as follows: 

 

 

 

 

 

(7) 

 

The sparse representation of the signal is obtained after 

creating the basis matrix. Various methods such as the 

convex and greedy optimization methods are available 

for obtaining the sparse representations [36-37]. In this 

paper, the greedy OMP optimization method is used 

[36].  

 
 

Figure (1): The block diagram of the proposed 
method based on the OMP algorithm 

 

OMP is one of the best and most commonly used 

methods for solving optimization problems in the 

compressed sensing theory and reconstruction of the 

compressed signals.  

 

The OMP algorithm starts with finding a column in the 

basis matrix , which shows the closest similarity with 

the selected signal. In this regard, the algorithm finds 

the similarity between the basis matrix and the signal 

residue. The signal residue is obtained by deducting the 

component calculated in the previous stage from the 

original signal. The different steps of implementing the 
OMP algorithm are depicted in a block diagram 

Inputs: ECG signal , Basis matrix  

Initialize:  

The similarity between the residual 

signal and the basis matrix; 

 

Consider the largest value as the 

nonzero position; 

 

Coefficient estimation; 

 

Update the residual signal; 

 

The stopping 

criterion is met? 

 

Sparse representation of signal  

Yes 

No 



IT in Industry, vol. 8, no.2, 2020                                                                                            Published online 07-April-2020 

13 

Copyright © Authors                                                                                                                         ISSN (Print): 2204-0595 

                                    ISSN (Online): 2203-1731 

depicted in Figure (1). In this block diagram,  

represents the hard thresholding operator on , which 

sets all the input components (except for the  inputs 

from ), which have the longest range, to zero [35]. 

  

The OMP algorithm is used to obtain the sparse 

representation of all leads the ECG signal separately. 

After obtaining the sparse representation of each single 
lead and putting each one in the columns of a matrix, it 

is possible to apply the compressed sensing. Next, the 

measurement matrix that satisfies the  condition is 

created. After building this matrix, compression is 

carried out using equation (8). 

 

 (8) 

In the next section, the simulation results experiments 

verify that low exists between the columns of the 

sampling matrix Φ and thus it satisfies the RIP 

condition. 

 

5. DISCUSSION AND SIMULATION RESULTS 
 
In this section, the results of the proposed algorithm 

simulations are presented for the compression of 

electrocardiogram signals. This technique is used to 

compress the artificial and real signals. Afterward, the 

mean reconstruction error is calculated for the original 

artificial signal and the reconstructed signal. The 

diagram of the compression ratio versus the mean 

squared error is also presented. In this diagram, the 

dimensions of the original signal and the reconstructed 

signal are linked to the reconstruction error. Finally, the 

method proposed in [11], in which the wavelet basis 
matrix is used, is compared with the proposed 

algorithm. In order to find out which algorithm is more 

efficient in terms of computational complexity, 

reconstruction error comparison is carried out between 

the algorithms. The configuration of the used system is 

Intel Core2Duo, 2.53GHz, P8700, 4GB RAM in 64Bit-

Matlab R20013b platform. The PTB database includes 

15-channel signals collected from 290 patients at the 

sampling frequency fs= 1 kHz and resolution rate of 16 

bits. In the simulation results, all of the multi-channel 

signals in these two databases were used. Since WBAN 

networks comply mostly with the frequencies lower 
than 369Hz, every ECG signal was re-sampled at the 

frequency 250Hz. This is due to the fact that the ECG 

signals in the wireless body sensor networks are 

normally sampled at the frequency 250Hz [38-41]. The 

simulation results show the superiority of the Gaussian 

basis matrix and the proposed algorithm to the wavelet 

basis matrix. 

 

5.1. Compression of the Artificial ECG Signal 

 

In this subsection, due to the availability of real multi-
lead ECG signals, we are going to evaluate the 

performance of the proposed algorithm on artificial 

ECG signals. The advantage of the availability of the 

original signal is the possibility of the addition of noises 

and the analysis of the algorithm performance in 

different conditions. The actual error is also obtained 

through this method. So, in [33] the process of creating 

artificial electrocardiogram signals is described.  

 

Firstly, a period of the artificial single-lead ECG signal 

is created using a model of artificial cardiac single 
production in [33]. Thereafter, the standard Kalman 

filter, which is introduced in [40], provided the artificial 

noise using the time-varying AR variables. The 

produced noise from this method has all the 

characteristics of the noise of the real ECG signal. The 

simplified discrete model for the generation of artificial 

ECG signals is as follows. 

 

 

( 
  (9) 

 

Where Δθ_i=(θ_k-θ_i )mod(2π) and η is the additive 
noise to the signal and the sum on i consists of the five 

dominant waves in the ECG signal (P, Q, R, S, T). The 

parameters required for equation (9) are listed in Table 

(1). 

 

Table (1): The parameters for producing the artificial 

electrocardiogram signal 

 

Index 

(i) 
     

      

      

      

 

The artificial ECG signal is generated at the desired 

sampling frequency using the dynamic equations and 

the parameters. For instance, a period of this signal is 

depicted in Figure (2) at the 500Hz sampling frequency. 

The sparse representation of the signal, which was 

obtained using a basis matrix Φ with a size of 
3000×6000, is presented in Figure (3). The nonzero 

coefficients are obtained using the OMP algorithm, in 

which the signal sparsity is 55. The measurement matrix 

A has a size of 130×3000. The inputs to this matrix are 

obtained from the Gaussian i.i.d distributions with a 

mean of zero and a variance of 1. Based on equation (4), 

number 130 is selected, which equals the size of the 

compressed signal. The sparse representation and the 

reconstructed one are presented in Figure (3). Hence, the 

OMP algorithm is used to reconstruct the sparse 

representation of the ECG signal. As seen in Figure (3), 
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the reconstructed sparse representation is aligned with 

the original sparse representation at most points, and it 

clearly shows adequate reconstruction of the signal. 

After reconstructing the sparse coefficients, the ECG 

signal is recovered using these coefficients. As seen in 

Figure (2), the reconstructed ECG signal is fully aligned 

with the original signal, reflecting its accurate 

reconstruction. In Figure (4), the original signal is 

depicted with its sparse representation. According to 

Figure (4), the sparse coefficients are fully aligned with 
the original signal, while the OMP algorithm properly 

determines the positions of the important coefficients 

and accurately estimates their sizes. Figure (5) also 

presents the compressed ECG signal samples. 

 

Another signal is shown in Figure (6) with an increase 

in noise to demonstrate the effectiveness of the proposed 

algorithm for further smoothing the signal and reducing 

the noise. The signal to noise ratio in Figure (6) 

decreased by 7db as compared to Figure (2). As seen in 

this figure, the reconstructed signal is more smoothed 
and the effect of the noise is significantly reduced. 

 

 
 

Figure (2): The original and reconstructed signals 

 
 

Figure (3): The signal sparse representation and its 

reconstructed form 
 

 

 
 

 

Figure (4): The original signal and its sparse 

representation 

 

 
 

Figure (5): The compressed signal representation 

 

 
 

Figure (6): The original signal and its reconstruction 

with an increase in noise 

 
Figure (7) shows the mean reconstruction error for the 

artificial ECG signal and the reconstructed signal with 

100 iterations of the Monte Carlo test, which is 

determined via equation (10). 
 

 

 

(10) 

 

Where  and  are the original and the reconstructed 

signal, respectively.  
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Figure (7): The mean reconstruction error for the 

original signal and the reconstructed signal 
 

Afterward, the compression ratio CR = N⁄m is 

introduced in order to evaluate the performance of the 
proposed algorithm and its compression potential. In 

CR, m is the length of the compressed signal and N is 

the length of the original signal. So, CR varies from 1 to 

∞(1≤CR<∞). The relationship between CR and the 

reconstruction error for three different N values is 

calculated through the Monte Carlo simulation. 

 

 

(11) 

 

In Figure (8), the reconstruction error versus different 

values of CR is depicted for different numbers of N. The 

ranges in the three diagrams are different due to the 

difference in values of N.   

 

 
 

Figure (8): The compression ratio and the related 

reconstruction error 

 

5.2. Compression of the Real ECG Signal 
 

In this subsection, the proposed algorithm is applied to 

real multi-lead ECG signals and the results are 

compared with the algorithm proposed in [11], where 

the wavelet basis matrix is used. The simulation results 
show the considerable superiority of the proposed 

algorithm and the Gaussian basis matrix to the discrete 

wavelet basis. Fifteen real ECG signals at the sampling 

frequency of 360Hz are obtained from Physionet 

database (Physiont ATM) [41]. The ECG signals belong 

to a 44-year-old woman, who does not smoke. Since the 

real ECG signals are noisy, some of the generated sparse 

coefficients are extra and belong to the noise of the 

signal. Hence, the additional coefficients are omitted 

using a thresholding method such that 

 

 

 

(12) 

 

If the generated sparse coefficient is larger than the 

threshold , the coefficient is considered significant. If 

it is smaller than the threshold , it is considered 

insignificant and equals zero. Using this thresholding 

method, the generated sparse coefficients decrease from 

55 to 30. Figure (9) shows a period of the second lead of 

the multi-lead ECG signal database along with its sparse 

representation. In this figure, the sparse representation 

scale is modified to comply with the original signal. The 

original sparse representation, which is presented in 

Figure (10), shows on a dictionary with a size of 

. Moreover, Figure (11) shows the 

compressed signal representation .  

 

 
 

Figure (9): The real ECG signal and its sparse 

representation from the Physionet database. 

 

 
 

Figure (10): The sparse representation of the 2nd lead of 
the real multi-lead ECG signal from the Physionet 

database. 
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Figure (11): The compressed signal using compressive 
sensing. 

 

 
 

Figure (12): The sparse representation of the 2nd lead of 

the real multi-lead ECG signal from the Physionet 

database. 

 

Besides, the ECG signal is turned into its sparse form 

using the wavelet basis matrix similar to [8] and the 

compressed sensing is applied to the signal. To this end, 

the Daubechies mother wavelet (db3) is used and the 

wavelet transform is implemented in three steps. As 

seen in Figure (12), the signal sparsity in this state 
equals 104. It is shown that the minor coefficients are 

equal to zero in the sparse representation. 

  

Then the proposed algorithm is applied separately for 

each lead and then the signals are reconstructed. The 

original and reconstructed signals representations for 

each 15 lead ECG signal are depicted in Figure (13). 

The compliance of each single reconstructed signal with 

the original signals despite the high compression ratio 

demonstrates the accuracy of the proposed algorithm. 

 

 
 

A) the first lead of multi-lead ECG database 

 
 

B) the second lead of multi-lead ECG database 

 

 
 

C) the third lead of multi-lead ECG database 

 

 
 

D) the fourth lead of multi-lead ECG database 

 

 
 

E) the fifth lead of multi-lead ECG database 
 

 
 

F) the sixth lead of multi-lead ECG database 
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G) the seventh lead of multi-lead ECG database 
 

 
 

H) the eighth lead of multi-lead ECG database 
 

 
 

I) the ninth lead of multi-lead ECG database 

 
 

J) the tenth lead of multi-lead ECG database 

 

 
 

K) the eleventh lead of multi-lead ECG database 

 

  
L) the twelve lead of multi-lead ECG database 

 

 

M) the thirteenth lead of multi-lead ECG database 

 

 
 

N) the fourteenth lead of multi-lead ECG database 
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O) the fifteenth lead of multi-lead ECG database 
 

Figure (13): The original and reconstructed signal by 

the proposed algorithm (A to O figures) 
 

The reconstruction error of the multi-lead ECG signals 

is evaluated for the proposed algorithm and the 

algorithm in [11] in terms of different CR values. 

Thereafter, the errors of all ECG signals from the 

Physionet database are summed up and the average 

value is depicted in Figure (14). The superiority of the 

proposed algorithm and the Gaussian basis matrix to the 
wavelet basis matrix is clearly evident. The simulation 

results for six different people from the Physionet 

database are listed in Table (2). The first column in this 

table contains the reconstruction error for the proposed 

algorithm using the Gaussian basis functions, and the 

second column shows the reconstruction error for the 

wavelet basis functions. The improvement in the 

average quality is shown in the last row of this table, 

which confirms the better performance of the 

compression algorithm in the proposed method. 
 

 
 

Figure (14): The mean reconstruction error of the multi-

lead ECG signals for the proposed algorithm and the 

algorithm in [11] in terms of several different 

compression ratios. 
 

Table (2): The reconstruction error for the proposed 

algorithm using Gaussian and wavelet kernels 
 

Subject no. OMP 

(Gaussian 

kernel) 

OMP 

(Wavelet 

kernel) 

S0190lrem 0.0321 0.2327 

S0195lrem 0.0055 0.177 

S0242lrem 0.0077 0.2702 

S0327lrem 0.0123 1.341 

S0031lrem 0.0036 0.33 

S0138lrem 0.044 0.563 

Average 

improvement 

(%) 

96% 85% 

 

6. CONCLUSIONS 
 

In this paper, a new method is proposed for modelling 

the ECG signals and compressing these signals based on 

the compressed sensing theory. First, the sparse 

representation of the signals is required to implement 
the method. The sparse representation of each single 

signal is obtained using a basis matrix with Gaussian 

kernels. Thereafter, the compressed sensing is used for 

signal compression with very fewer samples than the 

original signal. To reconstruct the multi-lead ECG 

signals, the greedy optimization method is improved to 

reconstructed signals with high accuracy and low 

recovery error. This method was used for artificial and 

natural ECG signals. Simulation resultsverify that our 

proposed algorithm achieves higher reconstruction 

accuracy with a smaller number of required 

transmissions, reconstruction error as compared to the 
method with a wavelet basis. 
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