Analysis of Motor Imagery EEG Classification Based on Feature Extraction and Machine Learning Algorithm

Main Article Content

Rameshwar D. Chintamani, et. al.

Abstract

The brain-computer interface provides the excellent potential to address nervous system-related activity. The function of the nervous system work between internal brain control and external human body physical structure. Some parts of the human body cannot generate the signal for the processing of the human brain, cannot recognize and identify human body parts' activity—the motor imagery EEG classification approach helps resolve such types of critical illness cause of death. The dimension and structure of motor imagery-based EEG data are very high and unsupported behaviors. The machine learning and another classification algorithm cannot handle these variants of EEG data directly. For the process of better classification of motor imagery, EEG needs transformation and extraction. The transform-based feature extraction process such as DCT, DWT, SFTF and some other harmonic frequency-based applied. In this paper presents the details analysis of feature extraction and classification algorithms for motor imagery EEG classification. The machine learning provides three types of an algorithm for classification, supervised, unsupervised and semi-supervised. This paper mainly focuses on the supervised machine learning algorithm. For the analysis of machine learning algorithm use BC competition-IV dataset. MATLAB software is used as a tool for the code of algorithms and measures standard parameters such as accuracy, sensitivity and specificity. 

Article Details

Section
Articles